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Highlights

• Class indicator matrix is learned for incomplete and unlabeled multi-view

data.

• Preserving the inter-view and intra-view data similarity can improve per-

formance.

• Running time is in the same magnitudes with that of the mainstream

methods.

• Obtain best results for incomplete multi-view clustering and cross-modal

retrieval.
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Abstract

Multi-view data with each view corresponding to a type of feature set are com-

mon in real world. Usually, previous multi-view learning methods assume com-

plete views. However, multi-view data are often incomplete, namely some sam-

ples have incomplete feature sets. Besides, most data are unlabeled due to a

large cost of manual annotation, which makes learning of such data a challenging

problem. In this paper, we propose a novel subspace learning framework for in-

complete and unlabeled multi-view data. The model directly optimizes the class

indicator matrix, which establishes a bridge for incomplete feature sets. Besides,

feature selection is considered to deal with high dimensional and noisy features.

Furthermore, the inter-view and intra-view data similarities are preserved to

enhance the model. To these ends, an objective is developed along with an

efficient optimization strategy. Finally, extensive experiments are conducted for

multi-view clustering and cross-modal retrieval, achieving the state-of-the-art

performance under various settings.

Keywords: Multi-view learning, Subspace learning, Incomplete and unlabeled

data, Multi-view clustering, Cross-modal retrieval
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1. Introduction

Various kinds of real-world data appear in multiple modalities or come from

multiple channels. For example, a web page can be described by both images

and texts, and an image can be encoded by different visual features such as

SIFT and GIST. Such data are called multi-view data with each view repre-5

senting a type of feature set and these views can be homogeneous descriptors or

heterogeneous modalities. Usually, multiple views provide complementary infor-

mation for the semantically same data, which motivates the multi-view learning

to obtain better performance than using a single view [1]. Besides, Multi-view

data describing the same content lead to the research of exploring consistent in-10

formation between different views, which results in cross-modal matching tasks

[2].

Recently, plenty of methods have been developed for multi-view data to ex-

plore complementarity and consistency characteristics. It should be noted that

most methods focus on complete multi-view data, which means all data sam-15

ples in the datasets have complete feature sets. However, in real applications,

it is often the case that some views suffer from missing information leading

to incomplete multi-view data. For example, given a two view dataset with

visual and textual features, some samples have only either visual or textual fea-

ture with only part of them sharing both representations. Under such scenario,20

traditional multi-view learning methods usually face notable performance de-

generation [3, 4]. Besides, real multi-view data are often unlabeled due to the

expensive cost of manual annotation, which makes the learning of incomplete

multi-view data a challenging problem.

Generally, to model incomplete and unlabeled multi-view data, we confront25

two basic challenges. The first one is how to handle incomplete multi-view data.

Since some samples have incomplete feature representations, a naive strategy

is to remove such examples and only use samples with complete feature sets.

However, such methods are contradicting with some tasks such as clustering

because we need to cluster all the data samples. More importantly, they cannot30
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Figure 1: The overview of our model with two views, i.e., text and image. For the incomplete
multi-view dataset, we use projection matrix to project the original features to the class
indicator matrix, which explicitly captures the clustering structure and serves as the latent
space. Besides, group sparsity is imposed on the projection matrices for feature selection.
Furthermore, the inter-view and intra-view data similarities are preserved to enhance the
model. Finally, our model can be applied for clustering and retrieval tasks.

make full use of the whole data to learn models. Another strategy is to fill

missing information. For example, matrix completion based methods [5] utilize

low rank structure of the matrix to fill missing entities. However, those meth-

ods usually cannot perform feature selection to deal with high dimensional and

noisy features. Thus by filling missing information is not a satisfactory strategy.35

Overall, a suitable model should use samples with complete feature representa-

tions and meanwhile utilize examples with incomplete feature sets to enhance

the learning process.

The second challenge is how to explore complementarity and consistency

for unlabeled multi-view data. Usually, for multi-view data describing seman-40

tically same content, different views share common characteristics and have

view-specific characteristics, which makes the modeling of those characteristics

complex. Furthermore, given unlabeled data, we just have the corresponding

relation between different views and this makes discover the structure of multi-

view data harder. Most previous methods try to find a low dimensional sub-45

space, where data samples under different views can be compared for exploring

the above characteristics. For example, canonical correlation analysis (CCA)

based approaches [6, 7] aim to find linear projections of different views with

maximal mutual correlation, and multi-view non-negative matrix factorization

based methods learn unified latent representations among multiple sources of50
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information [8, 9]. However, those methods cannot thoroughly explore the data

semantics in the learned subspace. To sum up, one good subspace should reflect

such information and meanwhile make use of multiple views.

In this paper, we propose a novel subspace learning framework to alleviate

the above problems, as shown in Figure 1. We directly optimize the class in-55

dicator matrix as a shared subspace through linear projection matrices, which

has two advantages: 1) establishing a bridge for different views based on their

optimized labels whether the multi-view data are complete or incomplete, and

2) the class indicator matrix in turn guides the subspace learning in a super-

vised manner to make the learning process more accurate. Since data are often60

with high dimensional and noisy features, the projection matrices are enforced

to be sparse to select relevant features when learning the latent space. Further-

more, the inter-view and intra-view data similarities are preserved to enhance

the subspace learning. To these ends, an objective is developed with an efficient

optimization strategy and convergence analysis. The experimental results show65

that our method outperforms the state-of-the-art methods.

Our contributions can be summarized as follows. 1) We propose a novel

subspace learning based incomplete and unlabeled multi-view learning method,

which jointly considers feature selection and inter-view and intra-view similar-

ity preserving to enhance the subspace learning. 2) We develop an iterative70

optimization algorithm to efficiently solve the proposed objective, and provide

theoretical analysis to guarantee its convergence. 3) We validate our proposed

method with extensive experiments under two settings in terms of two tasks, i.e.,

multi-view clustering and cross-modal retrieval, achieving better performance

than the state-of-the-art methods.75

The rest of the paper is organized as follows. In Section 2, we briefly review

multi-view learning, especially multi-view clustering and cross-modal retrieval.

Section 3 describes our model, along with its optimization and convergence

analysis. In Section 4, we report experimental results on multi-view clustering

and cross-modal retrieval. Finally, we draw the conclusion in Section 5.80
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2. Related work

In this section, we briefly review general multi-view learning methods. Since

we are focusing on two specific multi-view learning tasks, i.e., multi-view clus-

tering and cross-modal retrieval, we also introduce recent progresses of them.

2.1. Multi-view learning85

Multi-view learning deals with data represented by multiple distinct feature

sets and aims at boosting learning performance or discovering correlation. It

has a wide range of applications, such as dimensionality reduction, classification

and clustering. Generally, existing multi-view learning algorithms can be cate-

gorized into three schemes [1]. Co-training [10] is one of the earliest framework,90

which alternately maximizes the agreement of two feature sets. Soon after,

plenty of variants are developed, such as generalized expectation-maximization

(EM) and methods fusing co-training and other algorithms [11]. Multiple ker-

nel learning solves multi-view learning by regarding different kernels as different

views and then combining those kernels through linear or non-linear strategies.95

Such framework is widely studied and readers can refer to [12] for more details.

The last framework is subspace learning, which aims to find a low dimensional

space to measure the consistency and complementarity among multi-view data.

Typical examples such as Canonical Correlation Analysis (CCA) and its various

extensions [13, 14, 15] have obtained promising results in various tasks. In this100

paper, a novel subspace learning framework is developed for learning incomplete

and unlabeled multi-view data.

2.2. Multi-view clustering

Multi-view clustering, as one of basic tasks of multi-view learning, provides

a natural way to cluster multi-view datasets [16, 17, 18]. Generally, the main105

challenge lies in the mining of the complementary information among multiple

sources of information. Fortunately, a number of promising approaches have

been proposed, which can be roughly classified into four categories [1]. Methods

in the first category are subspace based ones [19, 8, 20, 21] and in the second

6
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category are co-training based algorithms [22, 23], which are popular frameworks110

as mentioned in multi-view learning. The third category is called late fusion

[24, 25], which combines the clustering results of different views by voting or

other fusion strategies. The last category learns a unified similarity matrix

among multi-view data [26, 27] based on subspace segmentation algorithms.

Then the matrix serves as an affinity matrix for final clustering.115

The existing multi-view clustering methods mainly focus on the data with

complete views, i.e., every data example has complete feature sets. As for

incomplete views, only a few works have been developed. Piyush et al. [28]

and Shao et al. [29] proposed spectral-based multi-view clustering methods

by filling kernel matrices of incomplete views through Laplacian regularization,120

which can only fit kernel-based multi-view clustering. Recently, Li et al. [30]

and Shao et al. [31] proposed subspace learning based incomplete multi-view

clustering method by using nonnegative matrix factorization (NMF). However,

NMF cannot be utilized for data with negative feature values. Xu et al. [5]

developed a matrix completion based incomplete multi-view learning method,125

but they cannot perform feature learning to deal with high dimensional and

even noisy features. Hence, we propose a new subspace learning framework to

consider all above factors.

2.3. Cross-modal retrieval

As a basic task of cross-modal matching, cross-modal retrieval plays an im-130

portant role in many real applications [32]. Aiming to explore correlation be-

tween different modalities, different kinds of methods are developed. Probabilis-

tic models are widely applied for specific cross-modal matching tasks, i.e., image

annotation exploring relation between images and tags [33]. Metric learning ap-

proaches aim to learn a metric between different modalities. Usually, similar135

pairs and dissimilar pairs or ranking lists are considered for similarity calcu-

lation between different modalities [34, 35]. Recently, to speed up retrieval,

binary representations of different modalities are learned. Those methods aim-

ing to find a Hamming space usually sacrifice accuracy for speed with typical

7
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examples such as [36, 37].140

The most related kind of algorithms with ours are subspace based methods,

such as Canonical Correlation Analysis (CCA) [7], Partial Least Squares (PLS)

[38] and Bilinear Model (BLM) [39, 40]. Those methods are typical unsupervised

algorithms with wide-spread applications. Besides, labels are considered to

enhance the subspace learning [41]. For example, Lin and Tang [42] proposed to145

learn a latent subspace so as to maximize the difference between within scatter

matrix and between scatter matrix. Sharma et al. [39] developed Generalized

Multiview LDA and Generalized Multiview MFA, which are based on single

view Linear Discriminant Analysis (LDA) and Marginal Fisher Analysis (MFA).

Recently, deep learning methods are applied for cross-modal retrieval, which150

aim to learn features for multiple modalities and meanwhile to explore their

correlation [2]. In [43], Kang et al. proposed a supervised subspace learning

method under the incomplete scenario, but their approach cannot deal with

unsupervised data. Generally, most above methods ignore the incomplete multi-

view scenario, which, however, is our focus here.155

This paper is built upon our preliminary conference version [44], and the

main extensions are summarized as follows. 1) While the previous paper [44]

mainly focuses on incomplete multi-view clustering, we now propose to model

for incomplete and unlabeled multi-view data. Accordingly, the previous work is

just a special case of this paper. 2) We extend previous objective for two views160

to a multi-view case, and more than two views experiments are conducted. 3)

We conduct extensive experiments of a new task, i.e.,unsupervised cross-modal

retrieval, which further validate the effectiveness of our model. Besides, more

experiments, e.g., running time, are designed to improve incomplete multi-view

clustering.165

3. Model

3.1. Preliminaries

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

For the incomplete multi-view data, we focus on a scenario that features of

all the views are available only for part of the dataset and the other samples

only have partial views. Such a scenario is often appeared in webpage applica-170

tions, where two/three views are frequently utilized. For example, in webpages

clustering based on images, texts and hyperlinks, usually partial webpages have

all the three feature sets, and the other webpages contain only one or two views.

Suppose we are given a l view dataset with n samples categorized into k

clusters. We use X
(g)
C and X̂

(g)
to represent feature matrix of the g-th view for175

examples with complete views and the other samples in view g, respectively.

Besides, their sizes are denoted as c and ng satisfying c < n. We use dg to indi-

cate the feature dimensionality of the g-th view. Accordingly, feature matrix of

examples under the g-th view are denoted as X̄
(g)

= [X
(g)
C , X̂

(g)
] ∈ Rdg×(c+ng).

Generally, multi-view data consisting of heterogeneous feature sets represent the180

same object, and therefore they share the same class labels. Similarly, YC and

Ŷ
(g)

are utilized to represent the class indicator of the g-th view. Finally we

use Y ∈ Rn×k to denote the class indictor matrix of the n samples with the

i-th row of Y satisfying Y(i, :) ∈ {0, 1}1×k being the class indicator vector of

the i-th sample. The notations are summarized in Table 1.185

Table 1: Notations and Explanations.
notation size description

X
(g)
C

dg × c feature matrix of the g-th view for examples with complete views

X̂(g) dg × ng feature matrix of the g-th view for examples excluding X
(g)
C

X̄(g) dg × (c + ng) feature matrix of the g-th view consisting of X
(g)
C

and X̂(g)

YC c × k class indicator matrix of samples with complete views

Ŷ(g) ng × k class indicator matrix of the g-th view for samples excluding X
(g)
C

Ȳ(g) (c + ng) × k class indicator matrix of the g-th view for examples appearing in view g

Y n × k class indicator matrix of all the n samples

U(g) dg × k learned projection matrix for the g-th view

Since our incomplete multi-view data are unsupervised, we do not know

exactly what the Y is, but we are aware of its structure and our task is to learn

such Y, which serves as a unified subspace for the incomplete and unlabeled

multi-view data. Finally, based on the learned subspace, we can deal with

various multi-view tasks, e.g., multi-view clustering and cross-modal retrieval.190
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3.2. Formulation

We aim to optimize the class indicator matrix Y for the incomplete and

unlabeled multi-view data and the advantages are listed as follows. 1) Y re-

flects the class indicator of the multi-view data, which is a relatively higher

level semantic representation of data. Even though data consist of multiple195

heterogeneous features, they potentially share the same semantic information.

2) By introducing the above semantic space, we construct a bridge for different

heterogeneous feature sets even though some samples have incomplete views.

3) Given the optimized Y, we can conduct multi-view learning in a supervised

manner, which in turn enhances the learning process. For example, using such200

an indictor matrix, we can perform feature selection in a supervised manner.

To learn the class indictor matrix, we learn a projection matrix U(g) ∈ Rdg×k

for each view to project their original spaces to such a semantic space as always

done in classification tasks. Then the objective can be formulated as:

min
U,Y

∑l
g=1 `

(
(X̄

(g)
,U(g)), Ȳ

(g)
)

+ β
∑l
g=1 ϕ

(
U(g)

)
+ γΩ

(
U(1), ...,U(l)

)

s.t. Y ∈ {0, 1}n×k; Y1k = 1n

(1)

In the above objective, there are four parts: feature projection for incomplete205

and unlabeled multi-view data, feature learning, data similarity preserving and

constrains. As for the constraints, 1k and 1n are k and n dimensional column

vectors with their values all being 1. Using the constraints, we force each data

sample belong to only one class. Next, we elaborate different parts.

Feature projection: As stated in the introduction part, a good way to210

deal with incomplete dataset should make use of data examples whether they

consist of complete feature sets or not. Thus, we project all samples under

different views to the semantic space and establish the relation between views

by enforcing the samples consisting of complete feature sets to share the same

class indicator vectors. By doing so, we can learn the class indicator matrix215

for all data samples and learn projection matrices for a view based on all the

examples in that view. Then the first part of Equation 1 is written as:

`
(

(X̄
(g)
,U(g)), Ȳ

(g)
)

=
∥∥∥[X

(g)
C , X̂

(g)
]TU(g) − [YC ; Ŷ

(g)
]
∥∥∥
2

F
(2)

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where YC ∈ Rc×k and Ŷ
(g) ∈ Rng×k are the learned class indicator matrices

for data examples with complete views and only with the g-th view respectively.

Feature learning: In Equation 1, a commonly used regularizer for U(g)220

is the F -norm to avoid over-fitting. However, we choose the l21-norm here to

perform feature selection like in supervised feature learning methods [45]. By

doing so, we can well deal with high dimensional and noisy features of each

view, and it is defined as:

βϕ
(
U(g)

)
= β

∥∥U(g)

∥∥
21

(3)

where ||U(g)||21 =
∑

i ||U(g)(i, :)||2 and U(g)(i, :) is the i-th row of U(g). When225

β is big, only a small subset of features will be selected, otherwise a large subset

will be chosen.

Similarity preserving: We hope to preserve the intra-view similarity and

the inter-view similarity to further enhance the learning of projection matrices.

More specifically, the neighborhood relationship between data samples under230

each view and the pairwise relationship for an example under different views

should be preserved in the latent space. The data similarities are:

W
(g)
ij =





exp(
−z(g)ij

2σ2 ), x̄
(g)
i ∈ Nm(x̄

(g)
j )or x̄

(g)
j ∈ Nm(x̄

(g)
i )

0, otherwise
(4)

W
(pq)
ij =





1, if x̄
(p)
i and x̄

(q)
j represent the same sample

0, otherwise
(5)

where W(g), g = 1, ..., l is the similarity matrix of the g-th view calculated

using the Gaussian kernel. z
(g)
ij is the Euclidean distance between two data235

examples, σ is width parameter for the Gaussian kernel, and Nm(x̄
(g)
i ) indicates

the examples of m nearest neighbors of x̄
(g)
i . W(pq), p = 1, ..., l; q = 1, ..., l; p 6= q

is the similarity matrix for view p to view q. When features x̄
(p)
i and x̄

(q)
j indicate

the same example, 1 is given as the weight, otherwise 0. From the definition,

we have W(pq) = (W(qp))T .240

Based on the above similarities, we define the regularization on the projection

11
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matrices as:

Ω(U(1), ...,U(l)) =
∑
g

∑
ij
W

(g)
ij

∥∥∥UT
(g)x̄

(g)
i −UT

(g)x̄
(g)
j

∥∥∥
2

F
+
∑
p

∑
q 6=p

∑
ij
W

(pq)
ij

∥∥∥UT
(p)x̄

(p)
i −UT

(q)x̄
(q)
j

∥∥∥
2

F

(6)

We define the overall similarity matrix W based on the above inter-view and

intra-view similarities as:

W =




W(1) W(12) · · · W(1l)

W(21) W(2) · · · W(2l)

...
...

. . .
...

W(l1) W(l2) W(l)




(7)

Then Equation 6 can be rewritten as:245

Ω(U(1), ...,U(l)) =
l∑

p=1

l∑

q=1

Tr(UT
(p)X̄

(p)
Lpq(X̄

(q)
)TU(q)) (8)

where L = D−W is the Laplacian matrix and D is a diagonal matrix with its

i-th diagonal element defined as the sum of the i-th row in W. Tr is the trace

of a matrix.

Finally, our objective is rewritten as:

min
U,Y

l∑
i=1

∥∥∥[X
(i)
C , X̂

(i)
]TU(i) − [YC ; Ŷ

(i)
]
∥∥∥
2

F
+ β

l∑
i=1

∥∥U(i)

∥∥
21

+γ
l∑

p=1

l∑
q=1

Tr(UT
(p)X̄

(p)
Lpq(X̄

(q)
)TU(q))

s.t. Y ∈ {0, 1}n×k; Y1k = 1n

(9)

In our objective, we have four terms: using the projection matrix to project250

each incomplete view to the latent space defined by Y; feature selection for

each view using the `21-norm based regularizer and the inter-view and intra-

view similarity preserving term defined by the Laplacian matrix. Besides, the

constraints imposed on Y guarantee that each example only belongs to one

group.255

3.3. Optimization

Since the variables in Equation 9, i.e., the projection matrix and the latent

representation, are coupled together, it may be difficult to optimize them at the

same time. Hence, we propose to alternatively optimize the variables to obtain

a local solution.260
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3.3.1. Optimize the class indicator matrix

Directly optimizing the Y is hard due to the discrete constraint, we follow

previous methods to relax the constraint as [46]:

YTY = Ik; Y ≥ 0 (10)

where Ik is an identity matrix. The constraints guarantee that there is only one

positive value in each row of Y, which is the ideal structure we need. However,265

different views only have part of all the latent representations, i.e., [YC ; Ŷ
(g)

]

for the g-th view is only part of Y, which makes the optimization still not an

easy problem. To handle this, we optimize YC and Ŷ
(g)

separately and relax

the constraints to the following form:

(YC)TYC = Ik,Y ≥ 0 (11)

Even though the orthogonal constraint on YC may not be rigorous when exam-270

ples with complete feature sets do not have all kinds of class labels. We ignore

this slight influence. In turn, it makes our optimization very compact. As for

Ŷ
(g)

, since examples in the same view share the same projection matrix and

the same data distribution, Ŷ
(g)

will have similar characteristic with YC . In

summary, the relaxed constraints will have almost the same effect with that of275

the original ones and can make the optimization more succinct.

We denote the objective in Equation 9 as O and the part excluding the YC

as Ŷ (Y = [YC ; Ŷ]). Then minimizing O over YC and Ŷ are simplified as:

min
YC

l∑

g=1

∥∥∥(X
(g)
C )TU(g) −YC

∥∥∥
2

F
s.t.(YC)TYC = Ik,Y

C ≥ 0 (12)

min
Ŷi,i=1,...,n−c

∑l

g=1
rg

∥∥∥(x
(g)
i )

T
U(g) − Ŷi

∥∥∥
2

s.t. Ŷi ≥ 0 (13)

where Ŷi is the i-th row of Ŷ. rg is an indicator, and its value is set to be 1 if280

example xi has the g-th view, otherwise 0.

To optimize YC , we bring in Lagrangian function as:

L(YC ,Λ,Γ) = Tr(Γ((YC)TYC − Ik))

−Tr(ΛYC) +
∑
g

Tr(−2AT
g YC + (YC)

T
YC)

(14)
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where Γ and Λ ≥ 0 are Lagrangian multipliers of the above function and Ag =

(X
(g)
C )TU(g). Applying the KKT condition, i.e., Λ(s, t)YC(s, t) = 0, we obtain:

285

(
∑

g

(−Ag + YC) + YCΓ) (s, t) YC (s, t) = 0 (15)

and we can obtain the following updating rule for YC [47, 48]:

YC(s, t) = YC(s, t)

√√√√√√
(
∑
g

A+
g + YCΓ−)(s, t)

(
∑
g

(A−g + YC) + YCΓ+)(s, t)
(16)

where for a matrix C, C+(s, t) = (|C(s, t)|+ C(s, t))/2, C−(s, t) = (|C(s, t)| −
C(s, t))/2 and C = C+ − C−. As for Γ, its diagonal elements are obtained

by summing s: Γ (s, s) =
∑

g ((YC)TAg − Ik)(s, s). The off-diagonal elements

of Γ are approximated by ignoring the non-negative values of Yc: Γ(s, t) =290

∑
g ((YC)TAg − Ik)(s, t). In summary, Γ is calculated by Γ =

∑
g ((YC)TAg − Ik).

To optimize Ŷ, we directly obtain its gradients and the updating rule is:

Ŷi = max
(

(
∑

g
rg(x

(g)
i )

T
U(g))/(

∑
g
rg), 0

)
(17)

where max is an element-wise operator that returns the maximal value.

3.3.2. Optimize the projection matrix

Minimizing the objective O in Equation 9 with respect to U(g) is rewritten295

as:

min
U(g)

l∑

g=1

∥∥∥∥(X̄
(g)

)
T

U(g) − Ȳ
(g)
∥∥∥∥
2

F

+β
l∑

g=1

∥∥U(g)

∥∥
21

+γ
l∑

p=1

l∑

q=1

Tr(UT
(p)X̄

(p)
Lpq(X̄

(q)
)
T

U(q))

(18)

where X̄
(g)
, (g = 1, ..., l) and Ȳ

(g)
, (g = 1, ..., l) are the feature matrix and the

latent representation for the g-th view as described before. They consist of the

data examples with all feature sets and only with the g-th view.

Differentiating the objective function in Equation 18 with respect to U(g)300

and setting it to zero, we have the following equation:

X̄
(g)

((X̄
(g)

)TU(g) − Ȳ
(g)

) + βD(g)U(g)

+γX̄
(g)

Lgg(X̄
(g)

)TU(g) + γ
∑
t6=g

X̄
(g)

Lgt(X̄
(t)

)TU(t) = 0
(19)
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where D(g) is a diagonal matrix with its i-th diagonal element calculated as

D(g)(i, i) = 1/(2||U(g)(i, :)||), and U(g)(i, :) is the i-th row of U(g). Practically,

D(g)(i, i) is calculated by1:

D(g)(i, i) =
1

2
√
||U(g)(i, :)||2 + ε

(20)

where ε is a smoothing term, which is usually set to be a small positive value.305

Then Equation 19 is optimized as:

U(g) = (X̄
(g)

(X̄
(g)

)T + βD(g) + γX̄
(g)

Lgg(X̄
(g)

)T )−1

(X̄
(g)

F̄
(g) − γ ∑

g 6=s
X̄

(g)
Lgt(X̄

(t)
)TU(t))

(21)

Finally, Algorithm 1 gives the overall optimization for equation 9. In Step 3,

we calculate the latent representation for the incomplete multi-view dataset. In

Steps 4 and 5, we optimize the projection matrices U(g), (g = 1, ..., l). Finally

Steps 3, 4 and 5 are repeated until convergence. Based on the latent repre-310

sentation, we can obtain the final clustering results directly based on the max

value of each row or use regular clustering algorithms, e.g., k-means imposed on

the latent representation. Besides, based on the learned projection matrix, we

can project new multi-modal data to a common space to perform cross-modal

retrieval.315

Algorithm 1 Optimization for Equation 9

Input:
Incomplete dataset X , parameters β and γ, and the number of classes.

1: Initialize U(g), (g = 1, ..., l) and Y randomly from [0, 1];
2: while not converge do
3: Calculate YC , Ŷ using Equation 16 and 17 respectively;
4: Solve D(g), (s = 1, ..., l) using Equation 20;
5: Calculate U(g), (g = 1, ..., l) using Equation 21 respectively;
6: end while

Output:
The latent representation and projection matrices for the incomplete multi-view
dataset: Y and U(g), (g = 1, ..., l).

1||U(g)(i, :)|| can be zero, which cannot guarantee the convergence of the algorithm. Sim-
ilar to [49], we add a smoothing term as in Equation 20.
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3.4. Convergence and complexity analysis

We prove the proposed iterative optimization strategy in Algorithm 1 will

monotonically decrease the objective function in Equation 9 in each iteration

until convergence.

3.4.1. Convergence for the indicator matrix320

In Step 3 of Algorithm 1, we will resort to auxiliary function approach [47] to

validate that the updating rule for YC will monotonically decrease the objective

value.

Let

H(YC) = Tr(
∑
g

(−2AT
g YC + (YC)

T
YC) + Γ((YC)TYC − Ik)) (22)

and it is further rewritten as:325

H(YC) = Tr(
∑
g

(2(A−g )
T

YC + (YC)
T

YC) + Γ+(YC)TYC

−Tr(∑
g

(2(A+
g )
T

YC + Γ−(YC)TYC)
(23)

Then the following function

h(YC , Ỹ
C

) =
∑
g,s,t

(A−g (s, t)
YC(s,t)2+Ỹ

C
(s,t)2

Ỹ
C
(s,t)

+
Ỹ

C
(s,t)YC(s,t)2

Ỹ
C
(s,t)

)

−∑
st

(
∑
g

2Ag(s, t))Ỹ
C

(s, t)(1 + log
YC(s,t)

Ỹ
C
(s,t)

) +
∑
st

(Ỹ
C

Γ+)(s,t)YC(s,t)2

Ỹ
C
(s,t)

−∑
gst

Γ−(s, t)Ỹ
C

(g, s)Ỹ
C

(g, t)(1 + log
YC(g,s)YC(g,t)

Ỹ
C
(g,s)Ỹ

C
(g,t)

)

(24)

is an auxiliary function of H(YC) (see in the appendix). Besides, it is easy to

verify that the Hessian matrix of h(YC , Ỹ
C

) is a positive definite matrix, thus,

h(YC , Ỹ
C

) is convex and its global minimum is obtained as in Equation 16.

Through the definition of the auxiliary function and the above derivation,330

we can obtain the following inequality:

H(YC
0 ) = h(YC

0 ,Y
C
0 ) ≥ h(YC

0 ,Y
C
1 ) ≥ H(YC

1 )... (25)

Thus, the updating rule for YC will monotonically decrease the objective value.

3.4.2. Convergence for the projection matrix

In Step 5 of Algorithm 1, we will prove that the updating rule in Equation

21 for U(g), (g = 1, ..., l) decreases the objective monotonically.335
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Taking U(1) as an example, we can derive that:

Ut+1
(1)

= min
U(1)

||(X̄(1)
)TU(1) − Ȳ

(1)||2 + βtr(UT
(1)D

t+1
(1)

U(1))

+γ
l∑

s=1
Tr(UT

(1)X̄
(1)

L1s(X̄
(s)

)
T

U(s))
(26)

and Equation 21 is the analytic solution of the above function. Then we have:

zt+1 + βtr((UT
(1))

t+1Dt+1
(1)

Ut+1
(1)

) ≤ zt + βtr((UT
(1))

tDt+1
(1)

Ut
(1)) (27)

where

zt+1 = ||(X̄(1)
)TUt+1

(1)
− Ȳ

(1)||2 + γ
l∑

s=1
Tr(UT

(1)X̄
(1)

L1s(X̄
(s)

)
T

U(s)) (28)

Substituting Dt+1
(1) into the above inequality, we have:

zt+1 +
∑
i

∑
j

Ut+1
(1)

(i,j)Ut+1
(1)

(i,j)

2||Ut
(1)

(i,:)|| ≤ zt +
∑
i

∑
j

Ut
(1)(i,j)U

t
(1)(i,j)

2||Ut
(1)

(i,:)|| (29)

Here we introduce a function f(x) = x−x2/(2a), which satisfies {∀x ∈ R, f(x) ≤340

f(a)|a > 0}. Then we make x and a be ||Ut+1
(1) (i, :)|| and ||Ut

(1)(i, :)|| respectively,

we have the following inequality:

||Ut+1
(1)

(i, :)|| −∑
j

Ut+1
(1)

(i,j)Ut+1
(1)

(i,j)

2||Ut
(1)

(i,:)|| ≤∑
j
||Ut

(1)(i, :)|| −
Ut

(1)(i,j)U
t
(1)(i,j)

2||Ut
(1)

(i,:)|| (30)

Add both sides of the above inequality to Equation 29, we obtain the following

inequality:

zt+1 + β||Ut+1
(1)
||21 ≤ zt + β||Ut

(1)||21 (31)

Thus the updating rule for U will decrease the objective function monotonically.345

Combining the above derivations, we prove that Algorithm 1 converges to a

local minimum.

3.4.3. Complexity analysis

We briefly discuss the computational complexity of our algorithm. As for

the optimization of Y, the main computation lies in the updating for YC as in350

Equation 16, which mainly consists of some matrix multiplication operations.

When optimizing U, we need to compute the overall multi-view similarity ma-

trix, whose complexity is about O(dgN
2
g ), where dgN

2
g being the product of the

dimensionality and the square of the number of examples for the g-th view is the

largest one among all views. However, it is a constant matrix and can be com-355

puted before the optimization of the variables. Besides, we need to use Equation
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21 to calculate U, which solves an inverse problem. Instead, we can update the

projection matrices by solving a linear system for O(d̂2)(d̂ = max(d1, ..., dl))

complexity.

4. Experiments360

4.1. Datasets

Seven public datasets are utilized, and their statistics are listed in Table 2.

Table 2: Information of the multi-view datasets.

Dataset USPS Cora BBC 3Source VOC Wiki NUS

# size 2,000 2,708 2,012 169 9,963 2,866 60,960

# cluster 10 7 5 6 20 10 10

# view 2 2 2 3 2 2 2

# feature size 76+216 2708+1433 6838+6790 3560+3631+3068 512+399 128+10 500+1000

USPS Dataset2 It consists of feature sets of handwritten numerals (0-9)

extracted from Dutch utility maps. The database has 2,000 examples even-

distributed in ten categories and is represented in terms of six visual features.365

Being same in [50], we use the 76 Fourier coefficients and the 216 profile corre-

lations as two views.

Cora Dataset3 It contains 2,708 scientific publications divided into 7 classes.

Two heterogeneous feature sets, i.e., citations and content are utilized here for

experiments, where the content feature is represented by 0/1-valued word vector370

indicating the absence/presence of the corresponding word from a constructed

dictionary.

BBC Dataset4 It is a synthetic multi-view text database, which is con-

structed using single view BBC and BBCSport corpora. In total, it consists of

2,012 data examples categorized into 5 classes. The two views used here are the375

segments representations of the same document with the dimensionalities being

6,838 and 6,790 respectively.

2http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
3http://lig-membres.imag.fr/grimal/data.html.
4http://mlg.ucd.ie/datasets/segment.html.
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3Source dataset5It is constructed using three well-known online news

sources, i.e., BBC, Reuters and the Guardian. In total, there are 416 distinct

news divided into six categories. Among them, 169 news are reported by all the380

three sources and are used as in [8] with each source serving as one view.

VOC Dataset6 It consists of 5,011 training and 4,952 testing image-tag

pairs categorized into 20 classes. We use the 512-dimensional Gist features and

399-dimensional word frequency features here. Some of the pairs are multi-

labeled, so we select those with only one label. Besides, those tag features with385

only zeros are deleted. Finally, we have 2,799 training and 2,820 testing pairs.

Wiki Dataset7 It is a widely used dataset for cross-modal retrieval, which

consists of 2,173/693 training/testing image-text pairs divided into 10 cate-

gories. In each pair, the image is encoded by the 128 dimensional SIFT de-

scriptors and the text is 10 dimensional topics derived from a Latent Dirichlet390

Allocation model.

NUS-WIDE Dataset8 It is collected from Flickr and consists of 270k

images in 81 categories. The images are represented by 500 dimensional SIFT

descriptors together with an 1,000 dimensional textual feature constructed by

the tags annotated to the images. Similar to [51], we select the pairs that belong395

to one of the 10 largest classes as a subset for evaluation, which results in 60k

image-text pairs.

4.2. Settings

Similar to [30], two different settings are considered and listed as follows.

The first setting: features from all the views are incomplete. The second400

setting: at least one view is complete. For the above two settings, we randomly

select 10% to 90% of the total examples, with 20% as interval, to have incom-

plete feature set. And this process is repeated 10 times with the average to be

5http://mlg.ucd.ie/datasets/3sources.html.
6http://www.pascalnetwork.org/challenges/voc/voc2007/workshop/index.html.
7http://www.svcl.ucsd.edu/projects/crossmodal/.
8http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.
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reported. In the first setting, we evenly distribute the number of examples with

incomplete views for simplicity [30].405

4.3. Multi-view clustering

4.3.1. Compared methods and settings

SingleV1, SingleV2: We run spectral clustering [52] on the two views

under the condition that all views have complete data examples. CCA: We

use the canonical correlation analysis to obtain the latent representation of410

multi-view data and then apply k-means on the obtained representation. Pair-

wiseSC, CentroidSC: Two regularization frameworks developed by Kumar

et al. [50] for multi-view spectral clustering. MultiCF: Wang et al. [20] pro-

posed a structure sparsity based multi-view clustering method. RMSC: Xia

et al. [26] developed a multi-view spectral clustering method, which is based415

on low rank and sparse decomposition of the transition matrix. PVC: Li et al.

[30] proposed a non-negative matrix factorization based incomplete multi-view

clustering method. PairwiseSC++, CentroidSC++, RMSC++: We de-

note the PairwiseSC, CentroidSC and RMSC methods with the preprocessing

of the kernel matrix under the two settings using [28, 29] as PairwiseSC++,420

CentroidSC++, RMSC++ respectively.

For the compared methods without preprocessing of kernel matrices, we use

zeros to replace incomplete feature sets. This may be a little arbitrary, but we

find possibly no methods can well fill various types of features at the same time,

e.g., visual features and textual features. Besides, it may be fair enough since our425

method does not preprocess the data at all. For our method, we use Gaussian

kernel to construct the intra-view similarity matrix, where the neighbors number

(m) and the width parameter (σ) in Equation 4 are empirically selected as ten

percent of the dataset size and 1 respectively in all the experiments. Since k-

means is used in all the experiments, it is run 20 times with random initialization430

and the mean value is reported.

Following [30], the normalized mutual information (NMI), one of the most

famous clustering evaluation measures, is utilized [53]. Usually, the larger the
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SpectralV1 SpectralV2 CCA PairwiseSC PairwiseSC++ CentroidSC CentroidSC++ MultiCF RMSC RMSC++ PVC Ours
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Figure 2: The NMI results on the four databases when both views suffer from the loss of
examples. IER (incomplete example ratio) is the ratio of examples with only one feature set.

NMI, the better the clustering performance.

4.3.2. Experimental results435
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Figure 3: The NMI results on the four databases when the first view suffer from the loss of
examples.
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Figure 4: The NMI results on the four databases when the second view suffer from the loss
of examples.

Figure 2 display the clustering performance on the two-view datasets USPS,

BBC, Cora and VOC under the first setting, and Figures 3 and 4 show the

results under the second setting with the first and second view suffering from

incomplete examples respectively. IER (incomplete example ratio) indicates the

percentage of examples having only one feature set. Besides, the results of all440

methods with IER being zero are also reported as the upper bound of each

method. Comparing the three figures, It can be seen that similar results are
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obtained for the two settings. Overall, our method performs better than all the

competing methods under different settings on the four databases.

As for PVC, it uses non-negative matrix factorization to find a unified low445

dimensional space. Compared with it, we also apply feature selection to se-

lect relevant features when learning the low dimensional subspace, which works

confronting the high dimensional and noisy features. Besides, the multi-view

data similarities are also explored in the proposed method. Thus our method

performs better than PVC. One of the major differences between our method450

and the MultiCF method under complete views is the constraint imposed on

the learned latent representation. We add the non-negative constraint, which is

more reasonable to approach the class indicator matrix. It may be the reason

that our method performs better when the incomplete example ratio is zero.

Since MultiCF is not designed for incomplete multi-view data, our method also455

outperforms it when IER is greater than zero.

As for PairwiseSC, CentroidSC and RMSC, we utilize the method proposed

in [29] to fill the kernel matrices of the incomplete views and accordingly Pair-

wiseSC++, CentroidSC++, RMSC++ are developed in the first setting. From

Figure 2, they perform better than their original ones in some databases and the460

performance gain seems not very significant especially when IER being large.

Furthermore, we apply the method in [28] to fill the kernel matrix of the in-

complete view using that of the complete views for PairwiseSC, CentroidSC

and RMSC to obtain the PairwiseSC++, CentroidSC++, RMSC++ methods

under the second setting. It can be seen the modified methods obtain relatively465

better performance compared with the original ones due to the use of at least

one complete view. In summary, our method performs better although these

kernel based multi-view clustering methods are preprocessed.

Finally, we conduct experiments on a more than two-view dataset, i.e.,

3Source dataset. In the first setting, examples with incomplete views are en-470

forced to have only one feature set for simplicity. In the second setting, examples

with incomplete views are evenly distributed. The results are displayed in Fig-

ure 7. It can be seen that similar results are obtained as in other datasets, which
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further validates our method. It should be noted that the method proposed in

[29] cannot deal with more than two-view data, so there are no results of Pair-475

wiseSC++, CentroidSC++ and RMSC++ under the first setting. As for the

second setting, the method developed in [28] can handle three or more views,

so the results of modified versions of PairwiseSC, CentroidSC and RMSC, i.e.,

PairwiseSC++, CentroidSC++ and RMSC++, are displayed.

Figure 5: The NMI results on the four databases under the first setting with the IER being
0 and 0.3 respectively.

4.3.3. Parameter selection480

In our model, β and γ balance the effect of feature projection term, `21-

norm based feature selection term and graph regularization based similarity

preserving term. In this section, we investigate how the performance varies

with the changes of the above two parameters. The results are shown in Figure

5. When β is small, the regularizer will lose the effect of feature selection. In485

the case when β is too big, the sparse characteristic will lead to the loss of useful

features and harm the learned latent representations. As for γ, when it is too

big, it may rely on too much of the neighborhood relationship obtained using

the similarity metric and this may harm the intrinsical data structure because

of the possible inaccuracy of the calculated similarity matrix. In summary, β490

and γ should be carefully selected and [0.001,0.01] is an optimal interval when

the multi-view data are normalized.
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4.3.4. Convergence study

As discussed in previous section, the optimization strategy converges to a

local minima. In this section, we give the convergence and the corresponding495

NMI curves with the varying updating iterations. Due to space limitation, we

only give the results under the first setting with incomplete example ratio being

30% and similar results can be achieved under the second setting. From Figure

6, it can be seen that the objective function converges fast, and the clustering

performance needs about 100 iterations to reach the best results. This may500

because the initial values of the variables in Algorithm 1 are randomly set. In

the future, we may consider a better initialization method to reduce the number

of iterations.
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Figure 6: Convergence and the corresponding NMI curves for the four databases under the
first setting with IER being 0.3.
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4.3.5. Running time

We show the running time for obtaining the subspaces of all the methods505

on the USPS and VOC datasets, where all the methods are run on the same

machine (Intel CPU 3.1GHz and 12 GB memory). All the methods are imple-

mented using MATLAB except that the main parts of PVC is C++ (provided

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

by their authors). The experimental results are shown in Figure 8. It can be

seen that our method obtains the best results, and the time used is in the same510

magnitudes with the mainstream methods. For methods PairwiseSC and Cen-

troidSC, eigenvalue decomposition needs to be performed in every iteration. For

RMSC, the Augmented Lagrangian Multiplier is utilized for optimization, which

brings more auxiliary variables and is thus time consuming. For our method,

not very large number of iterations is needed for acceptable results, which is515

shown in Figure 6.

4.4. Cross-modal retrieval

We conduct experiments on the VOC, Wiki and NUS WIDE datasets. For

the VOC dataset, we follow the natural training and testing split criterion. For

the Wiki database, similar to [51], we split it into a training set of 1,300 pairs520

and a testing set of 1,566 pairs. For the NUS WIDE database, we take 50% of

total points as the training set and the remaining as the testing set.

To evaluate the performance of our method, we conduct two cross-modal

retrieval tasks, i.e., Image query vs. Text database and Text query vs. Image

database. More specifically, we map the testing multi-modal data into the525

common space, and then take one modality of the testing data as the query set

to retrieve another modality. Finally, the cosine distance is utilized to measure

the similarity between different modalities.

4.4.1. Compared methods and settings

We compare our method with the following representative cross-modal re-530

trieval methods, i.e., PLS [38], BLM [40], CCA [7], CDFE [42], GMLDA

[39], GMMFA [39], CorrAE [2] and DCCAE [54]. Among them, PLS, BLM

and CCA are classical unsupervised methods that use pairwise information for

the common latent space learning. CorrAE and DCCAE are typical deep learn-

ing methods that jointly learn high level features and cross-modal matching535

between different modalities. CDFE, GMLDA and GMMFA are three typical

supervised methods that utilize label information. Different from unsupervised
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methods, those methods can obtain relatively discriminative subspaces due to

the guidance of labels.

For CDFE, GMLDA, GMMFA and DCCAE, we use the codes the authors540

released, and for PLS, BLM, CCA and CorrAE, we obtain their results based

on suggestions described by the papers. As for our method, similar parameter

settings are designed as in multi-view clustering, namely, we use KNN based

Gaussian kernel to construct the intra-view similarity matrix and the number

of the KNN neighbors and the width parameter for the Gaussian kernel are545

empirically selected as ten percent of the total examples of the database and

one respectively in all the experiments. As for the trade off parameters β and

γ, they are empirically selected to achieve the best results.

We use mean average precision (MAP) to evaluate the overall performance,

which is one of the most popular metrics for retrieval tasks. Usually, the larger550

the MAP, the better the retrieval performance. Besides the MAP, we use

precision-recall curve to further evaluate the effectiveness of different methods.

For their detailed definition, readers can refer to [55].

Table 3: MAP under different incomplete example ratios on the VOC datasets. I, T and M
represent Image query, Text query and Mean result, respectively.

Methods
0% IER 30% IER of I+T 30% IER of I 30% IER of T

I T M I T M I T M I T M

PLS 27.6 20.0 23.8 27.4 19.9 23.7 27.6 19.7 23.7 27.0 19.8 23.4

BLM 30.6 23.1 26.9 30.1 22.5 26.3 30.3 22.5 26.4 29.8 22.4 26.1

CCA 26.7 22.2 24.5 25.3 21.6 23.5 25.1 21.2 23.2 25.0 20.6 22.8

CorrAE 26.4 23.8 25.1 27.6 21.3 24.5 27.6 21.5 24.6 26.9 20.2 23.6

DCCAE 24.2 20.1 22.2 22.3 19.1 20.7 20.2 19.5 19.9 23.6 18.5 21.1

CDFE 30.0 22.5 26.3 28.1 20.6 24.4 27.7 20.4 24.1 27.9 20.6 24.3

GMLDA 31.1 24.6 27.9 28.6 22.6 25.6 28.5 22.6 25.6 28.7 23.2 26.0

GMMFA 30.6 24.3 27.5 28.1 22.1 25.1 27.9 21.9 24.9 27.6 21.5 24.6

Ours 37.5 29.7 33.6 35.9 27.5 31.7 36.5 28.1 32.3 35.0 26.0 30.5

4.4.2. Results on the VOC dataset

Since methods PLS, BLM, CCA, CDFE, GMLDA and GMMFA mainly555

focus on learning the latent subspaces and perform no feature selection, we

utilize Principal Component Analysis (PCA) to remove the redundancy in the

original features as did in [51], which shows better results than the one without

conducting PCA. CorrAE, DCCAE and our method performs feature learning

and subspace learning simultaneously, so we do not use PCA as preprocessing.560

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ours 

PLS 

CCA 

BLM 

Methods Retrieved Images 

Figure 9: Cross-modal retrieval using text query (car+window+tire+rims) on the Pascal VOC
dataset. Red rectangles indicate incorrect retrieval results.

Table 3 gives the results of MAP under the two settings, where the incom-

plete example ratios are 0% and 30%. Overall, our algorithm outperforms all

the compared methods under all the settings. BLM, CCA and PLS are unsuper-

vised methods, compared with them, we conduct feature selection and consider

similarity preserving. Compared with CorrAE and DCCAE, our method learns565

the class information and preserves the inter-view and intra-view data structure,

thus our method performs better. Though CDFE, GMLDA and GMMFA are

supervised cross-modal retrieval methods, our model outperforms them. This

may be because our algorithm can learn the class indicator matrix, which in

turn guides the learning of the subspace.570

We also give the precision-recall curves for image query and text query under

the two settings with the incomplete example ratio being 0.3, which are shown

in Figure 10. Overall, it can be seen that our method performs better than all

the compared methods. Figure 9 shows an example of the top nine retrieved

images by three unsupervised methods, i.e., CCA, PLS, BLM and our method575

using the tags ”car+window+tire+rims”.

4.4.3. Results on the Wiki dataset

Since the dimensionalities of images and texts on the Wiki dataset are low,

PCA is not utilized for the compared methods as did in [51]. Table 4 gives

the MAP scores with incomplete example ratios being 0 and 0.3 under the two580

settings. Overall, our method outperforms all the compared methods as did
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Table 4: MAP under different incomplete example ratios on the Wiki datasets. I, T and M
represent Image query, Text query and Mean result, respectively.

Methods
0% IER 30% IER of I+T 30% IER of I 30% IER of T

I T M I T M I T M I T M

PLS 24.0 16.3 20.2 22.4 16.3 19.4 23.4 16.2 19.8 23.6 16.3 20.0

BLM 25.7 20.4 23.1 25.3 19.8 22.6 25.6 20.0 22.8 25.7 20.6 23.2

CCA 26.3 20.7 23.5 23.5 18.8 21.2 23.5 18.7 21.1 24.1 19.00 21.6

CorrAE 25.4 20.4 22.9 25.3 20.5 22.9 25.1 19.8 22.5 25.3 19.9 22.6

DCCAE 24.2 20.2 22.2 23.7 19.9 21.8 21.3 18.7 20.0 24.2 19.6 21.9

CDFE 26.9 20.6 23.8 25.6 19.3 22.5 25.00 18.2 21.6 26.4 19.4 22.9

GMLDA 27.4 21.2 24.3 25.9 20.1 23.0 26.0 20.4 23.2 26.8 20.3 23.6

GMMFA 27.4 21.7 24.6 25.8 20.0 22.9 25.9 20.4 23.2 26.8 20.7 23.8

Ours 28.2 22.3 25.3 27.7 21.6 24.7 27.9 22.4 25.2 27.6 22.0 24.8

on the VOC database. Similarly, Figure 11 shows the precision-recall curves of

30% incomplete example ratio under the two settings, which further validates

the advantages of our method. It should be noted that similar results can be

obtained under other IERs, but we omit them due to space limitation.585

4.4.4. Results on the NUS WIDE dataset

Similar to the pre-processing of VOC dataset, Principal Component Analysis

(PCA) is conducted on the original features. Table 5 shows the results of all

methods under the two settings. It can be seen that our method performs

better than all the unsupervised algorithms, i.e., CCA, BLM, PLS, CorrAE590

and DCCAE. As for the two popular supervised methods, i.e., GMMFA and

GMLDA, our algorithm obtains similar results. Compared with them, we use

no labels, which shows the advantages than the supervised methods. Finally,

the precision-recall curves in Figure 12 further validate the above results.

Table 5: MAP under different incomplete example ratios on the NUS 60k datasets. I, T and
M represent Image query, Text query and Mean result, respectively.

Methods
0% IER 30% IER of I+T 30% IER of I 30% IER of T

I T M I T M I T M I T M

PLS 46.9 45.5 46.2 47.1 46.6 46.9 46.6 45.0 45.8 46.2 44.9 45.6

BLM 50.3 49.4 49.9 50.3 49.3 49.8 49.5 48.5 49.0 49.5 48.4 49.0

CCA 47.8 47.0 47.4 47.4 46.6 47.0 46.9 46.1 46.5 46.7 45.9 46.3

CorrAE 49.4 48.5 49.0 48.4 48.0 48.2 47.2 47.7 47.5 46.9 48.7 47.8

DCCAE 51.2 48.7 50.0 50.3 47.9 49.1 48.8 47.2 48.0 49.5 47.1 48.3

CDFE 44.9 46.4 45.7 44.9 45.4 45.2 44.1 44.1 44.1 43.4 43.6 43.5

GMLDA 52.5 50.5 51.5 52.2 50.2 51.2 51.7 50.0 50.9 51.8 49.8 50.8

GMMFA 49.8 49.2 49.5 50.2 49.4 49.8 50.9 49.4 50.2 51.0 49.3 50.2

Ours 51.2 53.0 52.1 50.6 52.8 51.7 50.9 51.2 51.1 50.9 51.0 51.0
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Figure 10: Precision-recall curves on the VOC datasets.

5. Conclusion and future work595

In this paper, we have proposed a novel subspace learning framework for

incomplete and unlabeled multi-view data. In our modal, we directly learn the

class indicator matrix, which serves as a latent space for bridging heterogeneous

feature sets. By utilizing all data samples in a view to learn the projection ma-

trix and making data examples consisting of complete feature sets to learn the600

shared class indicator matrix, the proposed model can well use the incomplete

data. Furthermore, feature selection and inter-view and intra-view data simi-

larities are considered to enhance our framework. To these ends, an objective

is developed with an efficient optimization strategy and convergence analysis.

Extensive experiments including multi-view clustering and cross-modal retrieval605

have validated our method compared with the state-of-the-art methods.

In real applications, it may be easy to obtain some supervised or weak super-

vised information, such as partial labels and the pairwise relationship (must-link

and cannot-link) between two data samples. This knowledge, serving as the true

semantic information, can guide the learning of unsupervised multi-view data.610

In the future, we may consider adding such information to promote the learning

of incomplete and unlabeled multi-view data.
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Figure 11: Precision-recall curves on the Wiki datasets.
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Figure 12: Precision-recall curves on the NUS datasets.
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Appendix

We prove that Equation 24 is an auxiliary function of H(YC). By the765

following inequality,

2a ≤ a2 + b2

b
, ∀a ≥ 0, b ≥ 0 (32)

then,

Tr(
∑

g

2A−g (YC)
T

) =
∑

gst

2A−g (s, t)YC(s, t) ≤
∑

gst

(A−g (s, t)
YC(s, t)2 + Ỹ

C
(s, t)2

Ỹ
C

(s, t)
) (33)

It is easy to obtain the following inequality,

Tr(
∑

g

(YC)
T

YC + Γ+(YC)TYC) ≤
∑

gst

Ỹ
C

(s, t)YC(s, t)2

Ỹ
C

(s, t)
+
∑

st

(Ỹ
C

Γ+)(s, t)YC(s, t)2

Ỹ
C

(s, t)

(34)

Due to z ≥ 1 + log z,∀z ≥ 0, we have:

−Tr(∑
g

2A+
g (YC)

T
+ Γ−(YC)TYC) ≤ −∑

st
(
∑
g

2A+
g (s, t))Ỹ

C
(s, t)(1 + log

YC(s,t)

Ỹ
C
(s,t)

)

−∑
gst

Γ−(s, t)Ỹ
C

(g, s)Ỹ
C

(g, t)(1 + log
YC(g,s)YC(g,t)

Ỹ
C
(g,s)Ỹ

C
(g,t)

)

(35)

By summing the above equations, we have h(YC , Ỹ
C

) ≥ H(YC) and h(YC ,YC) =770

H(YC). Thus, Equation 24 is an auxiliary function of H(YC).
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