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Abstract— Multiview clustering, which aims at using multiple
distinct feature sets to boost clustering performance, has a wide
range of applications. A subspace-based approach, a type of
widely used methods, learns unified embedding from multiple
sources of information and gives a relatively good performance.
However, these methods usually ignore data similarity rankings;
for example, example A may be more similar to B than C, and
such similarity triplets may be more effective in revealing the
data cluster structure. Motivated by recent embedding methods
for modeling knowledge graph in natural-language processing,
this paper proposes to mimic different views as different relations
in a knowledge graph for unified and view-specific embedding
learning. Moreover, in real applications, it happens so often
that some views suffer from missing information, leading to
incomplete multiview data. Under such a scenario, the perfor-
mance of conventional multiview clustering degenerates notably,
whereas the method we propose here can be naturally extended
for incomplete multiview clustering, which enables full use of
examples with incomplete feature sets for model promotion.
Finally, we demonstrate through extensive experiments that
our method performs better than the state-of-the-art clustering
methods.

Index Terms—Incomplete multiview data, knowledge graph
embedding, multiview learning, subspace learning.

I. INTRODUCTION

N REAL applications, it happens so often that the data
consist of multiple distinct feature representations, which
we call multiview data, each view indicating a feature set.
For example, an image can be represented by its color and
shape descriptors, and a webpage by using images, texts,
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and hyperlinks. Usually, these multiple sources of information
encode complementary information, which motivates the
development of multiview learning whose goal is to explore
such information for a better performance [1]-[3]. Multiview
learning is widely studied for a variety of applications, e.g.,
image processing, data mining, and multimedia [4]-[7].

When multiview learning has to deal with clustering tasks,
multiview clustering provides a natural way to organize data
with multiple feature sets [8], [9]. To explore complementary
information between different views, many promising methods
have been developed, which can be roughly divided into four
major categories [1], [10]-[12]. The first category methods are
subspace-based [13]-[21], which learn a unified embedding for
final clustering. The second category methods are cotraining-
based, with typical examples, such as [22]-[24]. The third cat-
egory methods are late fusion-based [25]-[27], which obtain
final clustering by combining the results from each view.
The fourth category methods learn optimal similarity matrix
to reflect data cluster structure, which serves as an affinity
matrix for spectral clustering [28]—[30]. Section II presents
more details in this regard.

Among the diverse multiview clustering methods, we focus
on the subspace-based ones, which are widely studied and
generally give a good performance. Based on the technique
used for obtaining low-dimensional embedding, these methods
can be divided into four typical classes. The first one is based
on the canonical correlation analysis [13], [31], [32], which
aims at finding linear projections of different views with max-
imal mutual correlation. The second class is based on spectral
analysis [14], [30], [33]. Kumar et al. [14] proposed two
methods to regularize spectral embedding in such a way that
each view is similar to the other for final clustering. The third
one uses matrix factorization to obtain an embedding. Usually,
nonnegative matrix factorization (NMF) [15], [34], [35] is
used. The last one uses a regression-based objective to obtain
such an embedding that is designed to approximate the scaled
indicator matrix [16], [17], [36].

For the above-mentioned embedding learning approaches,
the former two kinds of subspace-based learning methods
use a covariance matrix or an affinity matrix, while the
latter two types factorize the feature sets or directly project
different views to the desired subspace. To the best of our
knowledge, all the above-mentioned subspace-based methods
ignore data similarity rankings; for example, example A
may be more similar to B than C, which may better reflect
the clustering structure. The similarities between any two
examples can be utilized for embedding learning, such as
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isomap [37], locally linear embedding [38], and the Laplacian
eigenmaps [39], but these approaches require exact similarity
values, which are harder to be accurately obtained than that
of partial similarity triplets. Moreover, some studies were
carried out for leaning embedding of data points, based on
such triplets, achieving good results in such areas as crowd
sourcing and image classification [40]-[42]. However, such
triplets are obtained based on supervised information, which
are not accessible in unsupervised clustering tasks. More
importantly, previous methods focus mainly on embedding of
a single view as they cannot deal with multiple views, possibly
because contrasting triplets might appear among different
views.

Recently, the embedding methods designed for modeling
the knowledge graph in natural-language processing have
become popular [43]-[45], which inspires us to learn the
embedding of similarity triplets from multiple views. Given
the knowledge graph, with each entity showing abstract and
directed links representing different types of relations, those
methods usually learn unified embedding of all entities and
use several matrices or vectors to change that embedding for
relation-specific embedding. In the knowledge graph, the entity
appears in different relations, e.g., California contains Los
Angeles, and California is located in North America. Similarly,
in multiview data, example A may appear in similarity triplets
of different views; for example, example A is more similar to B
than other examples in one view and example A is more similar
to C than other examples in another view. By contrasting these
two scenarios and borrowing the idea behind the modeling
relations of the knowledge graph, we can cluster data with
multiple views.

In this paper, motivated by the recent embedding meth-
ods adopted for modeling the knowledge graph, we propose
here a novel subspace-based multiview clustering method.
We learn unified embedding for all examples, based on
similarity triplets, calculated from multiple views. To fit the
triplets produced from each view, view-specific embeddings
are learned through some basic matrices and view-specific
vectors, imposed on the unified embedding. By doing so,
we establish connection between the unified embedding and
view-specific embeddings and meanwhile explore multiview
characteristics. In real applications, we may confront the prob-
lem of missing information in a multiview data set, as some
examples may have incomplete feature sets. We show that
the method we propose here can be extended even to such
incomplete multiview clustering, which is important but not
studied much by previous works. We demonstrate through
extensive experiments that our method outperforms the state-
of-the-art multiview clustering methods.

The main contributions of this paper are as follows.

1) Motivated by recent embedding methods designed for
modeling knowledge graph, we propose, probably for
the first time, to learn embeddings from similarity
triplets, calculated from multiple views, for the task of
multiview clustering.

2) We learn unified embedding and several view-specific
embeddings for multiview data and design their rela-
tions appropriately, based on multiview characteristics,
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i.e., multiple views, describing the same content, share
only partial characteristics of data.

3) The proposed method is more practical in real appli-
cations and can be extended even to incomplete mul-
tiview clustering, which involves dealing with data of
incomplete feature sets, a scenario not studied much by
previous researchers.

4) Extensive experiments are conducted, using the method
we propose, for complete and incomplete multiview
clustering, achieving a better performance than that of
the state-of-the-art methods.

The remainder of this paper is organized as follows.
Section II briefly reviews related works; Section III elabo-
rates the proposed multiview clustering algorithm; Section IV
presents the experimental results and analysis, and finally,
Section V sums up the conclusions drawn from this paper.

II. RELATED WORK

In this section, we briefly review works relating to multiview
clustering, embedding for similarity triplets, and embedding
for the knowledge graph.

A. Complete and Incomplete Multiview Clustering

1) Complete Multiview Clustering: Multiview clustering,
which exploits complementary characteristics between mul-
tiview data sets for better clustering, can be roughly classified
into four categories based on when multiple sources of infor-
mation are utilized [1], [10], [11]. The first category meth-
ods are subspace-based [13]-[17], [46], which learn unified
embedding, irrespective of the view. Usually, these methods
are based on spectral analysis and matrix factorization through
some regularization techniques. The second category methods
integrate multiple sources of information during the clustering
process [22]-[24]. As one of the most popular semisupervised
tools, cotraining framework is used to complete the clustering
process. The third category methods obtain final clustering by
combining individual results from each view through late
fusion [25]-[27]. The last category methods learn unified sim-
ilarity matrix from multiview data, which serves as an affinity
matrix for final spectral clustering [28]-[30], [47]-[49]. Some
recently proposed methods [28], [30], [50] are extensions of
single view subspace segmentation methods.

Among the various multiview clustering methods, subspace-
based ones, which utilize various kinds of techniques for
low-dimensional embedding learning, are the most widely
studied. Usually, they are easy to explain and can reduce
the dimensionality of original data. Because of this property,
we based our method on subspace learning. The cotrain-
ing framework is popular for semisupervised classification,
which needs strong assumptions [10], such as sufficiency,
compatibility, and conditional independence, for its success.
If these are not satisfied, good clustering results may not be
guaranteed. Unlike subspace learning, which learns feature
from different views, late fusion-based methods obtain the
final results in a decision-level fusion. So, such methods
mainly rely on clustering results from each view. Unified
similarity matrix learning methods are similar to multiple
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kernel learning [10]. The recently proposed spectral subspace
segmentation-based methods usually give a good performance,
but their computation cost is rather high. Besides, with a large
number of examples, the data representation becomes more
voluminous than the original space.

2) Incomplete Multiview Clustering: Usually, the existing
multiview clustering methods assume that all the examples
have complete feature sets. However, in real applications, it so
happens that some examples lose certain feature sets, which
are called incomplete multiview data sets. A naive approach
to deal with such data sets is to remove the examples with
incomplete feature sets and use only the examples with com-
plete views for model training. However, such preprocessing
will lead to loss of information, which is found to be useful
for multiview clustering [35].

Recently, a few studies have been carried out, focusing
on incomplete multiview clustering, which can be classi-
fied into two major categories. The first category methods
preprocess incomplete views by filling missing information.
Rai et al. [51] propose to use the kernel matrix of a complete
view to fill the kernel matrices of incomplete views, through
the Laplacian regularization, which can deal with scenarios
in which at least one view is complete. Shao et al. [52]
improved on this approach [51] by dealing with scenarios in
which no views are complete. Unfortunately, both methods
are kernel matrix-based and thus can only be used for kernel-
based multiview clustering. The second category methods
need no preprocessing of missing information as they directly
carry out multiview clustering. Recently, Li et al. [35] and
Shao et al. [53] proposed subspace-based methods, which
learn low-dimensional embedding of incomplete multiview
data through NMF and obtain a better performance, compared
with that of the first category methods. However, NMF cannot
be used for examples with negative features. More recently,
Xu et al. [54] developed a matrix completion-based incomplete
multiview learning method, which is effective in restoring the
missing variables and obtaining unified embedding. However,
this method cannot effectively explore the multiview comple-
mentarity and consistency.

In this paper, a novel subspace learning-based method is
proposed, which can reveal the structure of data cluster better
than the existing subspace-based methods. Besides, it can be
a natural extension to incomplete multiview clustering.

B. Embedding for Knowledge Graph

The knowledge graph is a directed graph whose nodes
represent the entities and edges of different types of rela-
tions [43], [55]. Usually, the goal of modeling such multirela-
tional data is to discover connectivity patterns between entities,
so as to predict their relations and then find new relational
facts, which play an important role in various areas, such as
link prediction and natural language understanding. Recently,
some promising types of approaches have been developed to
embed the knowledge graph into a continuous vector space,
while preserving its structure [43], [44], [56]. Bordes et al. [55]
designed two relation-specific matrices that can adjust to
different types of relations. Socher et al. [45] modified
this design by taking into consideration the second-order

correlations between entity embeddings. Recently, apart from
learning embedding for entities, Bordes et al. [43] learned
embedding for each type of relation in the same space as that
of entities. Lin er al. [44] modified this model by separately
building entity in entity space and relation embedding in
relation space.

Generally, all the above-cited methods use some relation-
specific matrices or vectors to change the unified embedding
of directed entities, so that they can adjust to different relations
connecting them. Intuitively, by operating the embedding of
an entity, a new embedding is learned for such entity, under
a specific relation. Besides, to adjust to different types of
relations, they make no constraints on the matrices. What
is interesting to us are the nonconstraint matrices used for
operating embeddings. In our model, we can mimic such
an idea to learn unified- and view-specific embeddings of
complete or incomplete multiview data for clustering. For
learning embeddings of the knowledge graph, we are given
a known directed and unweighted graph. However, in the
clustering task, we may construct multiple undirected and
weighted graphs indirectly. Thus, for mimicking embedding
methods of multirelational data for clustering, the above-
mentioned problems still remain to be solved.

C. Embedding for Similarity Triplets

Following rapid developments in crowd sourcing, human
similarity judgment has gained popularity, e.g., example A is
more similar to B than C. Thus, a variety of machine-learning
techniques have been used for embedding of such similarity
triplets, which provides a chance to learn embeddings that
put similar data close and dissimilar examples far away.
Recently, various methods have been proposed to deal with the
comparison of triplets, obtained from a single view [40]-[42].
Agarwal et al. [40] resorted to nonmetric multidimensional
scaling to find a low-rank kernel matrix, so that pairwise
distances between embeddings satisfy the observed triplets.
Maaten and Weinberger [42] developed a technique called
t-distributed stochastic triplet embedding to collapse similar
points and repel dissimilar points in the embedding space.

Recently, McFee and Lanckriet [57] used multiple kernel
learning to learn unified embedding of similarity triplets.
Zhang et al. [58] explored correlations between views and
proposed to learn view-specific embeddings. However, both
these methods are not designed for unsupervised tasks. More
importantly, in [57], we use a tensor and several vectors,
rather than weights, to adjust the importance of each view for
obtaining view-specific embeddings that can adapt to view-
specific similarity triplets. And, rather than [58] using the
Mahalanobis distance to adapt to view-specific embedding,
we follow no constraints, and thus obtain a fewer regulariza-
tion parameters and a good interpretability. In summary, for
unsupervised multiview clustering task, ours is probably the
first attempt to fuse embedding methods for similarity triplets
and the knowledge graph.

III. MODEL

Given a data set X = {x;};_, with n examples, we use
X" = {x{}i_; € N> (p =1,...,1) to denote samples in
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Fig. 1. Comparison of multiview data and the knowledge graph. Given a
knowledge graph, the entity California contains Los Angeles and Berkeley,
in relation location_contains_location, can be seen as the multiview data
example V2, which is more similar to V1 and V6 than to other examples
in View 1. By regarding a relation as a view, we establish the connection
between the knowledge graph and multiview data.

the oth view, with d, as the feature dimensionality. Our task
here is to cluster data set X into the predefined c classes.

Before elaborating our approach, we assume that modeling
multiview data characteristics, i.e., consistency and comple-
mentarity, can well reflect the data, and it is helpful for
multiview clustering as least in most cases. More specifically,
we aim at learning unified and view-specific embeddings
revealing the triplet structure of multiview data, i.e., example
A is more similar to B than C. By doing so, we can learn
embeddings that put similar data close and dissimilar data
away, providing a better way to reveal the group structure
of data than the above-mentioned subspace-based methods.
Moreover, the multiview data characteristics can be well
explored.

A. Comparison Between Knowledge Graph and Multiview
Data Embedding

The knowledge graph, which uses the directed graph
to model entities and their relations, provides a natural
way for describing multirelational data. Among the various
learning methods for modeling the knowledge graph, recent
embedding-based methods give promising results in various
applications. Before presenting our model, we briefly intro-
duce those representative embedding methods. Given a knowl-
edge graph, as shown in the left part of Fig. 1, those methods
usually learn unified embedding for all entities to reveal the
structure of the graph. As an entity may have multiple relations
with other entities, e.g., California contains Los Angeles, and
California is located in North America, those methods learn
relation-specific embeddings to adapt to each relation, e.g.,
two embeddings for the entity California under the above-
mentioned two relations.

Intuitively, the scenario of multiview clustering is very
similar to that of knowledge graph embedding, wherein a view
is treated as a type of relation, as shown in Fig. 1. More
specifically, in knowledge graph modeling, an entity (such as
California), which is connected with some entities (like Los
Angeles and Berkeley) in a relation (contains), can also be
linked to other entities (like the USA and North America)
in another relation (is located in). Similarly, in multiview
clustering, an example (such as V2) is more similar to some
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examples (like VI and V6) in one view (view 1), while they can
also be similar to several examples (like V3 and V5) in another
view (view 2). For multiview clustering, we contrast these two
scenarios and resort to the embedding methods, designed for
modeling the knowledge graph.

Based on the above-mentioned comparison, we borrow the
idea behind knowledge graph embedding to learn unified and
view-specific embeddings for multiview data, from which the
multiview characteristics are explored, and the embeddings are
accordingly expected to well reflect the data cluster structure.

B. Formulation

As has been mentioned in Section I, similarity triplets can
better reveal the data cluster structure; so, we make the learned
embeddings a good reveal of such triplets. As no similarity
triplets are given to us, we need to construct them, which
should be accurate at least in part.

Fortunately, given an example under a specific view, it may
be simple to determine a few examples that are similar to
this example and possibly to many other examples that are
dissimilar to this example. By imposing a similarity metric, say
the Euclidean or Cosine distance, on a feature matrix, we can
regard the K nearest neighbors of an example as similar data
and those far away from the example as dissimilar ones. Then,
the similarity triplets set, calculated from the oth view S°,
is obtained by the following equation:

S’ ={(x}, x?, xp)li={1:n}; x? eSL(x}); xp € SL(xp)} (1)

where the examples of the K nearest neighbors of x!, and
those far away from x?, consist of positive set 8% (x}) and
negative set 8% (x}), respectively. For simplicity, we can select
a fixed number of examples to construct S” (x;’), say, half of
the total examples in the data set.

Generally, using the above-mentioned equation, we can
construct many similarity triplets, which may provide a chance
to learn an embedding that can reveal the structure of data
cluster better than the existing subspace-based methods. After
obtaining similarity triplets of different views, we aim at
learning view-specific embeddings to reveal such data cluster
structure, and the formulation is written thus

manZ;(Z) C(is(y” (), y" (e))), dis(y” (€, " (1))

st lledl =1, Vi 2)

where dis is a distance function, ¢ is a loss function, mea-
suring the embeddings of a triplet (x,x!,x}), and x €
S8 (x¢) and x} € SU(x}). E € N4*" is the unified embedding
with dimensionality d, and e; is the unified embedding for
the ith example. We impose the normalization constraint on
each column of E, which helps remove the scaling freedom
from the model. " is a function that models the relation
between the unified embedding and the embedding in the
oth view.

Because different views consisting of common and view-
specific characteristics represent the same content, it will
be appropriate to generate view-specific embeddings through
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several basic matrices, imposed on the unified embedding.
This way, the unified embedding is expected to give an
integrated representation of the content, and the view-specific
embeddings are forced to reflect the view-specific characteris-
tics. Moreover, the connection between the unified and view-
specific embeddings is established to explore the multiview
characteristics. The formulation is as follows:

s'Mllle;
p'e) =s'Me; = |- 3)
s'Mlle;

where MUl is a u x d x d tensor, MK ¢ squxd, serving
as a basic matrix, is the kth slice of the tensor, and s’ is
a u-dimensional latent vector. With this formulation, we can
explicitly model complementarity through several basic matri-
ces, i.e., the tensor M shared by all the views. Considering that
different views represent partial characteristics of the exam-
ples, view-specific vector s’ is imposed on the shared tensor
for view-specific operator matrix and then the view-specific
embedding obtained by changing the unified embedding e;.

It should be noted that several view-specific matrices P’ €
M9%d can be utilized as an alternative of s’ and M, but the
purpose to explicitly explore multiview characteristics cannot
be achieved, because we cannot explicitly model the relation
between those view-specific matrices.

A good choice for ¢ is a margin loss, which is widely
used in various algorithms, such as support vector machine.
Besides, the distance function can be a p-norm distance, which
is selected as the widely utilized Euclidean distance here.
Hence, we have

d(p” (&), w' (e;)), d(y" (e;), w" (ex)))
= max(||y’(e;) — w (€)I1* + 7 — [l (e;) — w’(ex)lI?,0)
(4)

where y is a parameter controlling the margin size.
Finally, the overall objective is

min
min > > 2
Lo (x}’,xj,xﬁ)esl’
+y —ls" M e; — MUl ]2, 0)
st lell2 =1, Vvt 5)

maX(| |SUM[1Cd]ei _ SDM[lid]ej”Z

where all the variables are the same as in (1)—(4).

C. Extension to Incomplete Multiview Clustering

In real applications, it happens so often that some examples
lose several feature sets, resulting in incomplete multiview
data. Since traditional multiview clustering algorithms often
assume complete views, they may be unable to effectively
deal with such data. In such a situation, the major challenge
for model training is how to make full use of the examples
with incomplete views. Fortunately, various approaches have
been developed to model samples with complete views; so,
examples with incomplete feature sets can be combined to
enhance the learning process. In this section, we will show how
our model can be extended seamlessly to incomplete multiview
clustering.

While dealing with incomplete multiview data, not all
examples appear in every views. Instead of modeling a point in
each view as in (5), we can model the triplets constructed from
each view. This way, all the samples are utilized whether they
consist of complete views or not. The objective is written as

min z E
E, s, M

maX(l |SDM[11d]ei _ SUM[lid]ej | |2

v X NDES),
+ y _”SUM[lCd]ei _ SDM[lid]ekllz, 0)
s.t. |ledla=1, V¢ (6)

where (x7, x?, x;) is calculated using examples appearing
in the oth view. Because of incomplete setting, not all the
examples appear in the vth view, i.e., S = {(x}, xlj)., )i =
{1:n,}; xl]). € SY(x}); x; € SU(x})}, where n, is the number
of examples appearing in the oth view.

Overall, our model can make full use of the incomplete
multiview data, regardless of whether the views of the samples
are complete or incomplete, for the following reasons: 1) we
establish the relation between unified embedding and incom-
plete view-specific embeddings, which is much more complex
than in the complete view setting and 2) tensor M is learned,
based on all samples, whether the example views are com-
plete or incomplete, and view-specific vector s” is learned,
using all the examples in the ovth view.

It should be noted that we learn unified embedding for all
the data and establish the relation between unified embedding
and view-specific embeddings, through (3); so, given an exam-
ple that does not appear in the oth view, we can still obtain
its embedding in view v by just using (3). This is interesting,
because we can fill up the missing embedding information
directly.

D. Optimization

Given a multiview data set, we construct similarity triplets,
denoted as {S”,v = 1,...,1}. As the sizes of these sets are
very large because of their construction process, calculation
of gradients, based on all the similarity triplets, may be
time-consuming. Furthermore, as different types of variables
are to be coupled, it may be difficult to optimize all the
variables simultaneously. Therefore, the stochastic gradient
descent method (in minibatch mode) is used to optimize the
variables E, s”, and M iteratively.

As for the constraint imposed on each column of the
unified embedding, we just normalize the columns at each
updating iteration [44], [55]. The objective in (6) is denoted
as L. Then, the gradient of each variable, under a specific
triplet (X?,X?,Xi) is calculated as follows. If ||s"MHUdle; —
s'Mldle |2 4y — ||s"MI1le; — s"MIley||2 <= 0, there
will be no gradients 1. otherwise, the gradients are as follows:

oL/oe; = 2(s"MI )T MUl ((e; —ej) — (e — ex)) (7)
oLjoe; = —2(s"MIhToMitdl (e, —e)) ®)
oL/oe; = 2(s*MIEh T MUl (g; — ;) 9)

I'When the value is zero, the gradient is not accessible, and some smooth

techniques can be utilized [59], However, in the batch-based stochastic
gradient descent method, we find that a zero gradient is fine as adopted in [60].
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oL/os’ = 2s*GGT — 2s"HHT
oL/oMP! = 2(s")Ts"M!P) (e; — ej)e —e;)’
—2(s")"s" M7l (e; — e;) (e — ex)”

(10)

Y

where G and H are two matrices, their pth columns being
Ml (e; — e;) and Ml (e; — e;), respectively, and M'P! is the
pth slice of the tensor M1,

Algorithm 1: Unified and View-Specific Embeddings
Learning

Input: Multiview data set X; Parameters K, y and d
Output: Latent embedding E for X
1 Calculate similarity triplets using Equation 1;
2 Initialize E uniformly from (-1,+1), s"MU4 = 1;
3 while not converge do
4 | Enforce the constraints ||e;||, = 1,Vi;
5 | Randomly sample part of triplets to construct a batch
(even distributed from all the views);
6 | Update all variables through gradients, calculated
from Equations (7) to (11);

7 return E.

Based on the above-mentioned gradients, the optimization
is summarized in Algorithm 1. First, we calculate similarity
triplets for each view, regardless of whether the view is
complete or not. With the initialized variables, we update
them, based on the gradients calculated from (7) to (11). It is
to be noted that in each iteration, we normalize the unified
embedding E in such a way that it lies on a unit circle or on
the surface of a hypersphere as in [44] and [55].

It should be mentioned here that we uniformly sample all
the triplets from all the views to construct a batch for each
updating iteration. However, in this process, if a view loses too
many examples, a few triplets will be selected, failing which
this view loses much of its information and hence cannot be
considered as good complementary information for parameters
learning. Besides, in the above-mentioned scenario, we can
reduce the size of K, when constructing triplets of this view
to alleviate performance degeneration.

After optimization, we can obtain unified embedding E
for final clustering. For simplicity, the k-means is used to
cluster the unified embedding E. Finally, the overall clustering
procedure is summarized in Algorithm 2.

Algorithm 2: Multiview Clustering Via Unified And View-
Specific Embeddings Learning

Input: Multiview data set X; Parameters K, y and d.
Output: Groups of the multiview data set.

1 Calculate the unified embedding E of multiview data set
using Algorithm 1

2 Perform k-means clustering algorithm on E;

3 return groups of the data sets.

E. Algorithm Analysis

For optimization, we use stochastic gradient descent algo-
rithm, which guarantees convergence with some clues, e.g.,
the carefully selected learning rate. Although normalization is
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imposed on the embeddings, it does not influence convergence,
and the same has been verified in various knowledge graph
embedding algorithms [43], [44], [55].

In our proposed model, the number of parameters used is
O(nd + ud? + lu), where n is the size of data set, d is the
dimensionality of the embedding, / is the number of views,
and u is the dimensionality of the latent vector, encoding view-
specific information. Generally, the size of parameters is about
nd, considering that /, d, and u are much smaller than the data
size. So, the parameter size is nearly linear with respect to the
size of data set. Such a small size of parameters is expected
to be scalable to large-scale problems, as proved in [43].

IV. EXPERIMENTS

This section deals with the experiments conducted exten-
sively to validate the effectiveness of our model.

A. Data Sets

In this section, we report the experimental results on six
kinds of public databases and summarize their information
in Table I.

1) US Postal Service Data Set>: This data set consists of
features of handwritten numerals, extracted from a collection
of Dutch utility maps. There are 2000 samples, uniformly
distributed in 10 categories, and each example is encoded in
terms of six types of features. For performance validation,
we use only 76 Fourier coefficients of the character shapes
and 216 profile correlations as two views on the same lines
as [14].

2) 3Source Data Ser®: This data set is constructed using
three well-known online news sources, i.e., BBC, Reuters,
and the Guardian. It includes a total of 416 distinctly new
items, divided into six categories. Of them, 169 news are
reported by all the three sources and are used, as in [15], with
each source serving as one view. Besides, the feature used is
word frequency for all the three views.

3) Cora Data Set*: This is a document data set with a
total of 2708 documents of seven classes (Neural_Networks,
Rule_Learning, Reinforcement_Learning,  Probabilistic_
Methods, Theory, Genetic_Algorithms, and Case_Based).
Two feature sets, i.e., citations and content, are used as
two views, where the content feature is 0/1 valued word
vector, indicating the absence/presence of corresponding
words.

4) BBC Data Ser’: This data set is a synthetic multiview
text database constructed by using single-view BBC and
BBCSport corpora. It includes a total of 2012 examples,
divided into five categories. Segment representations of the
same text are used here as two views, their dimensionalities
being 6838 and 6790. The data are preprocessed using prin-
cipal component analysis and the dimensionality is carefully
selected, based on the eigenvalues of the covariance matrix
obtained from the data.

2http://archive.ics‘uci.edu/mlldata sets/Multiple+Features.
3http://mlg.ucd.ie/data sets/3sources.html.
4http://lig—membres.imag.fr/grimal/data.html.

3 http://mlg.ucd.ie/datasets/segment.html.
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TABLE 1
INFORMATION OF MULTIVIEW DATA SETS USED IN THE EXPERIMENTS
Dataset USPS 3Source Cora BBC CCv VOC
# size 2,000 169 2,708 2,012 9,317 9,963
# view 2 3 2 2 2 2
# cluster 10 6 7 5 20 20
# feature size || 76+216 | 3,560+3,631+3,068 | 2,708+1,433 | 6,838+6,790 | 5,000+5,000 | 399+512

5) CCV Data Set®: This is a Columbia Consumer Video
database containing 9317 YouTube videos, categorized into
20 semantic classes. Two kinds of features, i.e., scale-invariant
feature transform and space-time interest points, are used
here for performance validation. Some of the videos are
multilabeled; so, we select only those with one label, and thus
we are finally left with 6743 examples.

6) Pascal Visual Object Classes (VOC) 2007 Data Set:
This consists of 9963 images, divided into 20 categories. For
performance evaluation, we use 512 dimensional GIST fea-
tures and 399 dimensional tag feature as two views. Besides,
images with multiple labels and those whose tag features are
all zeros are deleted. Thus, we are left with 5619 examples.

B. Compared Methods and Experimental Settings

Because our approach is based on the subspace learning
framework, we compare our method with representative mul-
tiview subspace learning, which mainly includes four typical
techniques, presented in Section I, i.e., canonical correlation
analysis (CCA), PairwiseSC, CenroidSC, partial multi-view
clustering (PVC), and MultiCF. These methods are described
in the following in detail.

1) SingleV: We run spectral clustering [61] on all the views

and report the best performance among them.

2) CCA: We use the canonical correlation analysis to obtain
low-dimensional embedding of multiview data and then
apply k-means on the embedding for final clustering.

3) PairwiseSC: For final clustering, we first regularize the
spectral embeddings of all the views to be similar
and then perform k-means on one of the embeddings,
as proposed by Kumar et al. [14].

4) CentroidSC: Kumar et al. [14] proposed to regularize the
spectral embeddings of all views to be similar toward a
unified spectral embedding and performed k-means on
the unified embedding for final clustering.

5) MultiCF: We approximate the scaled indicator matrix,
using the structure sparsity-based unsupervised feature
selection method, as proposed by Wang et al. [16].

6) Robust Multi-View Spectral Clustering (RMSC): We
learn the unified transition matrix, based on sparse and
low-rank constraints, as proposed by Xia et al. [30] and
then use spectral analysis for final clustering.

7) Partial multi-View Clustering (PVC): We use the NMF-
based method, proposed by Li et al. [35] in dealing with
complete and incomplete multiview clustering.

8) MultiTE: Our proposed multiview clustering uses the
unified embedding of similarity triplets.

6http://www.ee.columbia.edu/ln/dvmm/CCV/‘
7http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

9) SpeMultiTE: As one baseline, we implement MultiTE by
forcing unified and view-specific embeddings to be the
same.

10) SingleTE: As another baseline, we implement MultiTE
using only one view and report the best performance
among all the views.

For PairwiseSC, CentroidSC, RMSC, and PVC methods,
we use the codes released by their authors to achieve the
best performance. To implement the CCA method, we use
the code LSCCA package.® For implementing the MultiCF
method, we follow the authors’ suggestions to obtain clus-
tering results. For our method, the sizes of positive and
negative sets in (1) are empirically selected as 10 and half the
number of total examples, respectively, based on the Euclidean
distance between the data sets. As for the parameters y and d,
we control the margin size of our loss function and the
dimensionality of unified embedding by empirically selecting
them to be 5 and 30, respectively, in all the experiments.
As regard to the dimensionality of s”, we empirically set it to
be the number of views. As k-means algorithm is used in all
the experiments, it is run 20 times with random initialization,
and the mean value and the standard deviation are reported.

C. Evaluation Metrics

Two widely used measures, namely, the accuracy (ACC)
and the normalized mutual information (NMI), are used for
performance evaluation

I(CAT; CLS)
+H(CAT)H(CLS)
where CAT and CLS are true labels and cluster labels, respec-
tively. I(CAT; CLS) is the mutual information between CAT
and CLS, and function H(-) is the entropy of the variables.

(H(CAT)H(CLS))'/? is used to normalize the mutual infor-
mation to be in the range of [0, 1]

> 0(yi, map(c;))

n

NMI =

12)

ACC = (13)
where n denotes the size of the data, and y; and ¢; denote
the true class label and the calculated cluster label, respec-
tively, for the ith example. map(-) is a permutation function
that aligns the category label and the cluster label, using
the Hungarian algorithm [62]. J(y;, map(c;)) is an indicator
function, which returns 1, if y; = map(c;), otherwise 0.

For the two measures, higher values represent a better per-
formance. For more details about their definitions, the readers
can refer to [63].

8 http://www.public.asu.edu/jye02/Software/CCA/index.html.
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TABLE II
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NMI(%) USPS BBC Cora CCV 3Source vOC
SingleV 59.12(1.95) 62.32(3.16) 18.20(1.00) 19.03(0.40) 53.38(2.12) 46.93(2.99)
CCA 75.54(3.07) 17.14(8.54) 1.30(0.46) 22.71(1.38) 60.39(6.94) 45.54(4.66)
PairwiseSC 71.16(1.45) 73.37(4.30) 27.94(2.00) 19.71(0.38) 62.25(2.76) 51.34(1.25)
CentroidSC 73.40(2.42) 73.39(3.78) 24.47(1.48) 22.09(0.62) 62.25(2.51) 53.08(0.99)
MultiCF 68.12(2.04) 76.47(1.72) 25.45(2.11) 23.24(0.38) 67.91(4.41) 58.43(3.57)
RMSC 71.81(1.16) 74.73(3.59) 14.55(1.37) 21.43(0.74) 62.02(2.28) 55.94(0.94)
PVC 65.38(1.81) N/A 23.40(1.82) 14.30(0.61) 60.20(0.06) 67.20(1.24)
SingleTE 66.17(0.73) 63.82(0.11) 32.73(0.61) 19.54(0.16) 69.30(0.94) 62.86(1.00)
SpeMultiTE 77.80(0.50) 67.52(1.95) 25.39(0.34) 24.64(0.14) 70.65(0.98) 66.84(1.02)
MultiTE 82.32(0.53) 81.58(0.60) 39.75(0.25) 25.24(0.26) 79.36(1.95) 67.85(0.44)

TABLE III

CLUSTERING RESULTS IN TERMS OF ACC ON THE S1X DATABASES. BOTH THE MEAN VALUE AND THE STANDARD DEVIATION ARE REPORTED

ACC(%) USPS BBC Cora CCvV 3Source VOC
SingleV 61.81(4.81) 81.96(5.57) 32.75(1.47) 21.27(0.67) 52.93(3.59) 46.35(3.18)
CCA 74.53(4.96) 35.55(8.49) 26.95(1.58) 26.86(2.23) 62.37(6.76) 41.52(6.83)
PairwiseSC 75.85(5.89) 85.85(9.00) 44.57(3.57) 23.49(0.50) 58.37(3.28) 51.66(1.76)
CentroidSC 77.73(5.89) 87.29(7.99) 43.26(2.98) 25.39(0.93) 58.93(3.07) 56.43(2.03)
MultiCF 71.82(4.80) 89.29(1.14) 42.38(2.87) 26.00(0.36) 69.23(3.54) 55.22(4.83)
RMSC 78.77(4.96) 89.11(6.00) 33.74(2.41) 25.77(1.00) 58.17(3.45) 51.65(3.05)
PVC 67.64(4.70) N/A 42.01(1.34) 18.29(0.72) 68.40(0.06) 65.72(3.14)
SingleTE 63.61(1.77) 84.70(0.05) 46.08(0.67) 21.19(0.31) 78.69(1.40) 56.41(2.51)
SpeMultiTE 73.08(1.42) 84.64(3.65) 45.82(1.02) 23.83(0.24) 80.16(1.46) 68.34(2.14)
MultiTE 85.96(1.45) 93.74(0.99) 59.95(0.86) 26.88(0.61) 82.91(2.64) 69.97(1.03)

D. Complete Multiview Clustering

The NMI and the accuracies of different clustering methods
on the six data sets are shown in Tables II and III, respec-
tively. Overall, it can be seen that our method outperforms
all the algorithms with which it is compared. In particular,
the improvements achieved by the proposed method MultiTE,
in terms of ACC and NMI are, respectively, 15% and 12% on
the Cora database, and 13% and 12% on the 3Source database.

PairwiseSC and CentroidSC methods obtain embeddings
through the spectral analysis of the Laplacian matrices from
multiview data, which are based on the similarities calculated
between any two examples. On the other hand, our method
obtains unified embedding through partial similarity triplets,
constructed from the data, which are easier to obtain accurately
and may even better reveal the true cluster structure than other
methods. As RMSC achieves clustering in a similar manner
with PairwiseSC and CentroidSC, the performance of MultiTE
is better than that of RMSC.

As regard to PVC, it uses NMF to obtain unified low-
dimensional embedding. We can explore and compare the
rankings of data similarity between PVC and other methods,
which may be more useful to discover the structure of group
data. However, as PVC is based on NMF, it may limit its
applications to multiview data with negative features.

MultiCF is a regressionlike clustering method, which
may directly obtain the normalized cluster indicator matrix.

However, it may be difficult to learn the cluster structure
directly by projecting original feature spaces to the extent
of indicating data labels because of semantic gaps. Thus,
the performance of MultiCF is worse than that of our method.
Besides, MultiCF needs to solve the projection matrices once
per every column, and thus it consumes more time with
increasing number of clusters.

As regard to SpeMultiTE, it learns low-dimensional embed-
ding, adjusted to all views, which is unreasonable, because
different views may produce contrasting triplets. Besides,
as the views are complementary, each view may share only
partial characteristics of the data, which is not a good way
to learn view-specific embeddings of data. As MultiTE can
eliminate the above-cited problems, its performance is con-
sidered better than that of SpeMultiTE. Furthermore, it is
observed that SpeMultiTE does not outperform SingleTE on
any data set, because using the same embedding for all views
harms the data cluster structure, sometimes. The comparison
with SpeMultiTE and SingleTE further validates the usefulness
of considering multiview characteristics, i.e., consistency and
complementarity.

E. Incomplete Multiview Clustering

Similar to [35], we consider two settings of incomplete
multiview clustering. For a two-view data set, let ¢, m, and n
be the numbers of examples appearing in the first and second
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views, respectively. Then, the two settings are listed as
follows.

1) First Setting: m > 0 and n > 0, which means that both

views suffer from information loss.

2) Second Setting: Either m = 0 or n = 0, which means

that at least one view is complete.
For the above-mentioned two settings, we randomly select
10%-90% of examples, with 20% as interval, to appear in
only one view. This process is repeated 10 times and the
average is reported. Furthermore, for the first setting, we even
distribute the number of examples to appear in only one view,
for simplicity.

Apart from the NMF-based incomplete multiview clus-
tering method [35], there are a few algorithms that can
preprocess incomplete views by filling missing information,
as described in Section II. We compare our method with those
algorithms as well. The method in [51] can deal with the
situation wherein at least one view is complete; so, under
the second setting, we can use [51] to preprocess kernel-
based methods, i.e., PairwiseSC, CentroidSC, and RMSC.
Furthermore, the method in [52] can deal with the scenario
wherein no view is complete; so, under the first setting, we can
use it to preprocess PairwiseSC, CentroidSC, and RMSC.
In summary, the methods preprocessed in [51] or [52] are
denoted as PairwiseSC++, CentroidSC++, and RMSC++,
respectively.

1) Results Under the First Setting: Fig. 2 shows the NMI
of all clustering methods on USPS, BBC, Cora, and VOC
databases, under the first setting. Due to space limitation,
we have to conduct our experiments on only four databases,

80

NMI results on the four databases when the first view suffers from the loss of examples.

and it is possible that similar results would be obtained
with other data sets. An incomplete example ratio (IER)
represents the percentage of examples appearing only in one
view. Overall, it can be seen that our method outperforms
all the methods with which it is compared, with different
IERs.

For spectral-based methods, i.e., PairwiseSC, CentroidSC,
and RMSC, we use the method proposed in [52] to fill their
incomplete kernel matrices, which results in the methods of
PairwiseSC++, CentroidSC++, and RMSC++. From the
figure, it can be seen that the modified methods show a
few or no improvements and, in some cases, the final clustering
(especially for RMSC) may have been even harmed, because
under incomplete views, the methods proposed in [43] may not
promote kernel matrix completion, or the parameters selection
will have to be done more carefully for the preprocessing
method [52] and for approaching RMSC.

As regard to PVC, it learns unified low-dimensional embed-
ding for incomplete multiview data, based on NMF, which
is designed for incomplete multiview clustering without pre-
processing. However, it cannot effectively explore the data
relations, and this could be one reason why our method
outperforms it.

In dealing with the methods not designed for incomplete
multiview clustering, i.e., CCA, PairwiseSC, CentroidSC,
MultiCF, and RMSC, we just use zeros to replace the missing
features. This may be a little arbitrary, but there is, perhaps,
no other method that can simultaneously fill missing informa-
tion of visual features and the textual features. Besides, it is
fair for comparison, as we do not preprocess the data at all.
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NMI on the four databases with the varying Dim and K.

From the figure, it can be seen that, with increasing IER, our
method degenerates less than the other methods. This implies
that the proposed method can well deal with incomplete
multiview clustering.

2) Results Under the Second Setting: The NMI of all the
clustering methods on USPS, BBC, Cora, and VOC databases,
under the second setting, with either the first view or the sec-
ond view being incomplete, is shown in Figs. 3 and 4. IER
is the same as in the first setting. Besides, the clustering
performance of spectral clustering, under a complete view,
is also reported. Overall, it can be seen that the proposed
method outperforms the methods with which it is compared.

It should be noted that we use the method proposed in [51]
to fill the kernel matrix of incomplete view, which results in the
methods of PairwiseSC++, CentroidSC++, and RMSCH++.
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Fig. 7. NMI versus varying iterations.

From the figure, it can be seen that these modified methods
obtain a better performance than the original ones, because
using a complete view can better guide the learning of kernel
matrices of incomplete views.

As regard to the performance of other methods, the results
obtained are similar to those obtained in the first setting,
excepting that all the methods achieve a better performance
with the same IER. This may be because, under the second
setting, we have a complete view, which may be more helpful
than the scenario of incomplete views.

E. Parameter Study

In (6), parameter y controls the margin size, which can be
empirically set to be 5 in all the experiments. We find that
this parameter is not so sensitive for the final results as shown
in Fig. 5. Furthermore, there are two implicit parameters in
the whole algorithm, i.e., the dimensionality of the unified
embedding (denoted as Dim) and the size of K nearest
neighbors (denoted as K). In this section, we test how the
performance varies with changes in these two parameters. Due
to space limitation, we have conducted our experiments on
only four databases, and it is possible that similar results would
be obtained with other data sets.
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Fig. 6 shows that, when K is too large, the triplets may
be wrongly constructed due to limitation of similarity metrics,
but, when it is too small, the triplet sets are not big enough
to reveal the data clustering structure. As regard to the
dimensionality (Dim), when it is too small, unified embedding
cannot embed enough information to reflect data, and when it
is bigger than 40, the performance ceases to increase. Overall,
we find that [10,20] and [30,100] are the optimal intervals for
K and Dim, respectively.

G. Performance Versus Iteration

Fig. 7 illustrates the NMI curves obtained by varying
iterations on USPS and VOC data sets. Due to space limitation,
we have conducted our experiments on only two databases,
and it is possible that similar results would be obtained with
other data sets. In all the experiments, the size of a batch is
selected to be 50. From the figure, it can be seen that not many
iterations are required to obtain acceptable results, compared
with the size of the triplet sets produced by multiview data,
e.g., 4E + 7 pairs on the USPS data set. This is reasonable,
because many triplets on a view are repetitive. For example,
sample A is more similar to B than C, and if the semantics
between C and D are similar, the comparison of the triplet
(A, B, and D) is not necessary. Furthermore, even though
different views may produce contrasting triplets, they share
numerous same triplets, because different views describe the
same semantic content. Overall, the complexity is not a heavy
burden for our algorithm.

H. Running Time

In this section, we would show the running time required
for obtaining the embeddings by all the methods on USPS and
VOC data sets, using the same machine (Intel CPU 3.1 GHz
and 12-GB memory). The publicly available codes of all the
methods, compared here, are written in MATLAB, excepting
the main parts of PVC, which are written in C++4. Our
method is also written in MATLAB. As regard to MultiCF,
we implement it using MATLAB, following the authors’
suggestions. The experimental results are shown in Fig. 8.

Runing time (sec)

Running time versus ACC for all the methods on the USPS and VOC data sets.

From Fig. 8, we can see that our method achieves the
best results; the time it takes for obtaining an embedding
is the same as that taken by the mainstream methods. For
PairwiseSC and CentroidSC methods, the kernel matrix of
each view has to be calculated. More importantly, eigenvalue
decomposition is performed in every iteration, when the
embedding for each view is solved iteratively. For RMSC,
kernel matrices will have to be precalculated before solving a
problem, constrained by low rank and structure sparsity. Then,
the augmented lagrangian multiplier scheme [64] is used for
optimization, which brings in more auxiliary variables that
render optimization more time-consuming because of the need
for more iterations. For our method, as shown in Fig. 7, not
many iterations are needed to achieve acceptable results by
the stochastic method.

V. CONCLUSION AND FUTURE WORK

In this paper, considering different views as different
relations in a knowledge graph, we learn from the knowl-
edge graph embedding and propose a novel complete and
incomplete multiview clustering method. To model multiview
characteristics, a novel measurement is developed to establish
the relation between the learned unified and view-specific
embeddings. Furthermore, our model can be extended to
incomplete multiview clustering, which clusters data with
incomplete feature sets. Extensive experiments have validated
the effectiveness of the proposed method in relation to the
state-of-the-art methods, for both complete and incomplete
multiview clustering.

In our model, similarity triplets construction and latent
embedding learning are two separate procedures, and hence,
the similarity triplets used are constant in all the training
procedures. Therefore, the potential possibility of interaction
between similarity triplets construction and embedding learn-
ing is likely be ignored, but we may consider combining these
two steps into a unified framework, in our future research.
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