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ABSTRACT
Multi-view clustering, which explores complementary infor-
mation between multiple distinct feature sets for better clus-
tering, has a wide range of applications, e.g., knowledge
management and information retrieval. Traditional multi-
view clustering methods usually assume that all examples
have complete feature sets. However, in real applications,
it is often the case that some examples lose some feature
sets, which results in incomplete multi-view data and
notable performance degeneration. In this paper, a novel
incomplete multi-view clustering method is therefore devel-
oped, which learns unified latent representations and pro-
jection matrices for the incomplete multi-view data. To ap-
proximate the high level scaled indicator matrix defined to
represent class label matrix, the latent representations are
expected to be non-negative and column orthogonal. Be-
sides, since data are often with high dimensional and noisy
features, the projection matrices are enforced to be sparse so
as to select relevant features when learning the latent space.
Furthermore, the inter-view and intra-view data structure
is preserved to further enhance the clustering performance.
To these ends, an objective is developed with efficient opti-
mization strategy and convergence analysis. Extensive ex-
periments demonstrate that our model performs better than
the state-of-the-art multi-view clustering methods in various
settings.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering ; I.5.3 [Pattern Recogni-
tion]: Clustering—Algorithms
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Figure 1: The overview of the proposed method.
X1 and X2 are incomplete multi-view data with
the red rectangular indicating examples with com-
plete feature sets. We learn projection matri-
ces U(1) and U(2) and the unified latent repre-
sentations F (non-negative and column orthogonal)
for multi-view data. Here we constrain the
projection matrix to be sparse so as to select rele-
vant features from the possibly high dimensional and
noisy feature sets. Besides, the inter-view and intra-
view data structure is preserved when learning the
latent space. Finally, the clustering results are ob-
tained by performing the k-means algorithm on F .

1. INTRODUCTION
Various kinds of real-world data appear in multiple modal-

ities or come from multiple channels. For example, a web
page can be described by both images and texts, and an
image can be encoded by different visual features such as
SIFT and GIST. We call such data multi-view data with
each view representing a type of feature set. Usually, mul-
tiple views provide complementary information for the se-
mantically same data, which leads to the development of
multi-view learning. By exploiting the complementary char-
acteristics between multi-view data, multi-view learning can
obtain better performance of learning tasks than relying on
just one single view [27]. Till now, multi-view learning has
been widely studied in a variety of areas, such as knowledge
management, data mining, multimedia and information re-
trieval [18, 27].

Multi-view clustering, as one of basic tasks of multi-view
learning, provides a natural way to cluster multi-view dataset-
s. Generally, the main challenge lies in the mining of the



complementary information among multiple sources of in-
formation. Fortunately, a number of promising approaches
have been proposed, which can be roughly classified into
four categories [27, 31, 8]. Methods in the first category are
subspace based ones [5, 15, 16, 29, 28], which learn a latent
space so that different views are comparable in that space.
On the other hand, some methods are co-training based al-
gorithms [1, 14, 33], which obtain the clustering results in
an iterative clustering manner. The third category is called
late fusion [3, 10, 13], which combines the clustering results
of different views by voting or other fusion strategies. The
last category learns a unified similarity matrix among multi-
view data [32, 19, 30], which serves as an affinity matrix for
final clustering. For more details on multi-view clustering,
please refer to Section 2.
It should be noted that previous multi-view clustering

methods usually assume that all the examples have complete
information of all views, i.e., each example in the database
has complete feature sets. However, in real applications, it
is often the case that some views suffer from missing infor-
mation. For example, in image clustering based on visual
and textual features, some images have only visual or tex-
tual information with only a part of the data sharing both
feature sets. We call such dataset incomplete multi-view
data. When traditional multi-view clustering methods con-
front the above scenarios, a naive approach may remove the
data examples that are incomplete. However, this strategy
is contradicting with our goal that groups all data examples
into their corresponding clusters.
Recently, a few attempts have been made concentrating on

multi-view clustering with incomplete views, which may be
classified into two major categories. The first strategy pre-
processes incomplete views by filling missing information.
Piyush et al. [23] and Shao et al. [24] provided to complete
the kernel matrices of the incomplete views and then used
kernel-based clustering methods for final clustering. Howev-
er, these two methods can only deal with the kernel-based
multi-view clustering algorithms, which greatly limit their
extension to more widely used subspace-based multi-view
clustering methods. Recently, Li et al. [34] claimed that the
methods in the first category are not a good choice for incom-
plete multi-view clustering and accordingly proposed a non-
negative matrix factorization based method (PVC), which
proved to be effective for document clustering. But, there
are also some limitations about the PVC method. Firstly,
since data are now often with high dimensional and noisy
features, it becomes urgent to select relevant and discrimi-
native features when performing clustering. Secondly, PVC
utilizes nonnegative matrix factorization to learn latent rep-
resentations of data, which cannot well deal with data with
negative feature representations.
In this paper, we propose a novel incomplete multi-view

clustering method based on joint feature selection and sub-
space learning (as shown in Figure 1). Firstly, we utilize a
regression-like objective to learn a subspace, in which da-
ta examples from different views can be compared irrespec-
tive of the heterogeneity between feature sets. To directly
explore the complementary characteristics among differen-
t views, the latent representations of data examples with
complete views are expected to be the same. Besides, since
the features for different views may be high dimensional and
even noisy, feature selection is performed to select relevant
features for latent space learning. At last, a graph regu-

larization is utilized to further explore the inter-view and
intra-view relationship of the data examples. To these end-
s, we develop an objective to achieve all the above goals,
and accordingly propose an alternating minimization algo-
rithm to find an efficient solution. Extensive experiments
demonstrate that our method outperforms the state-of-the-
art multi-view clustering methods.

Main contributions: 1) We propose a novel incomplete
multi-view clustering method, which incorporates feature
selection, subspace learning and inter-view and intra-view
similarity preserving into a unified objective. 2) We devel-
op an iterative optimization algorithm to efficiently solve
the proposed objective, and theoretical analysis is provided
to guarantee its convergence. 3) We validate our proposed
method with extensive experiments under two settings on
four databases, achieving better performance than the state-
of-the-art methods.

The rest of the paper is organized as follows. In Section 2,
we briefly review multi-view clustering methods. Then our
incomplete multi-view clustering algorithm is elaborated in
Section 3. Section 4 shows experimental results and analysis.
Finally, Section 5 concludes the paper.

2. RELATED WORK
Multi-view learning deals with data represented by mul-

tiple distinct feature sets and aims at boosting the learning
performance [27]. Till now, plenty of methods have been
developed with sound theories and multi-view learning has
become a hot topic with widespread applicability [20, 26].
For example, the co-training method [2], one of the most fa-
mous multi-view learning frameworks, has been widely ap-
plied for webpage classification. When multi-view learning
meets the unsupervised clustering task, multi-view cluster-
ing is accordingly developed to extend traditional single view
clustering to the multi-view case.

Generally, multi-view clustering can be roughly classified
into four categories. Algorithms in the first category find a
unified low-dimensional space, in which the learned embed-
ding of data can well explore the complementary information
among different views [5, 15, 16, 29, 11]. These methods ob-
tain final clustering results through a single view clustering
method performed on the learned embedding. Kamalika et
al. [5] obtained the low-dimensional subspace of multi-view
data through the widely used canonical correlation analysis
technique. Kumar et al. [15] proposed two objectives to reg-
ularize the Laplacian embeddings between different views to
be similar and spectral analysis is employed for parameter
learning. Liu et al. [16] developed a multi-view non-negative
matrix factorization based method to gain a consensus em-
bedding of the original data, which is further developed by
He et al. [12] using various co-regularization forms. Re-
cently, Wang et al. [29] proposed a regression-like objective,
which conducts multi-view clustering and feature selection
at the same time. Tang et al. [28] utilized unsupervised fea-
ture selection to cluster multi-view social media, and Qian
and Zhai [22] also resorted to the above technique to obtain
a low dimensional embedding of multi-view web news data.

Methods in the second category integrate multiple sources
of information in the clustering process. Typical examples
are the co-training and co-EM based multi-view clustering
methods [1, 14, 33]. Kumar et al. [14] resorted to co-
training, a popular semi-supervised tool, to develop the first
co-training based multi-view clustering algorithm. Further-



more, Zhan et al. [33] proposed a more sophisticated multi-
view clustering algorithm by combining LDA, k-means and
the co-training framework. The third category is late fu-
sion, which integrates the clustering results obtained from
each view by voting or other fusion strategies [3, 10, 13].
Long et al. [17] proposed to learn the best clusters by fus-
ing the clusters from each view through mapping functions.
Greene et al. [10] utilized the matrix factorization based
method to obtain optimal clusters. The last category aims
to learn a unified similarity matrix among multi-view data,
which serves as affinity matrix for final clustering [32, 19, 30,
4]. Muthukrishnan et al. [19] combined multiple similarity
matrices by using a regularization framework to obtain a
better similarity graph. Furthermore, Yin et al. [32] resort-
ed to subspace clustering to obtain comparable similarity
matrices through pairwise co-regularization.
The existing multi-view clustering methods mainly focus

on the data with complete views, i.e., each data example has
complete feature sets. However, in real applications, some
data examples possibly lose some views. To handle this sce-
nario, a few works have been developed [23, 24, 34]. Piyush
et al. [23] proposed a spectral-based multi-view clustering
method, which can deal with the scenario that at least one
view is complete. They use the similarity matrix of the
complete view to fill the kernel matrices of incomplete views
through Laplacian regularization. Furthermore, Shao et al.
[24] improved [23] by dealing with situations where no views
are complete. They collectively fill all the kernel matrices
by optimizing the alignment of shared data examples in the
database. To sum up, both methods are based on the k-
ernel matrices and can only adapt to kernel-based multi-
view clustering. Recently, Li et al. [34] proved that the
above methods are not a good choice for incomplete multi-
view clustering and proposed a subspace based method using
nonnegative matrix factorization (PVC). However, PVC has
some limitations restricting its applications. Firstly, multi-
view data are often high dimensional and noisy, and it may
be necessary to select discriminative features when learning
the latent subspace. Secondly, PVC utilizes nonnegative ma-
trix factorization to learn latent representations of the data,
which limits it applications to data with negative feature
sets.

3. METHOD

3.1 Notations
For the sake of introducing our model, we discuss a dataset

with two views and it is straight-forward to extend our
model to the dataset with more views. Assume the two
views of data are represented as X(1) and X(2) respectively.
In the traditional multi-view clustering setting, a complete

database X = {X(1), X(2)} = {(X(1)
i , X

(2)
i ), i = 1, ..., N} is

given, where N is the number of data examples. Howev-
er, in the incomplete view setting, we are given data X̂ =

{X̂(1,2), X̂(1), X̂(2)}, where X̂(1,2) = {(X(1)
i ,X

(2)
i ), i = 1, ..., c},

X̂(1) = {(X(1)
i ), i = c+1, ..., c+m} and X̂(2) = {(X(2)

i ), i =
c+m+1, ..., c+m+n} represent data examples having com-
plete views, only the first view and only the second view with
the number of examples being c, m and n respectively. In
total, we have c+m+ n examples in the database.

We denote X
(1)
c ∈ Rd1×c and X

(2)
c ∈ Rd2×c the examples

having both views with d1 and d2 being the dimensionality

of the two feature sets. ThenX
(1)
c and X̂(1) consist of the ex-

amples in the first view, as denoted as X̄(1) = [X
(1)
c , X̂(1)] ∈

Rd1×(c+m). Similarly, we have the examples of the second

view represented as X̄(2) = [X
(2)
c , X̂(2)] ∈ Rd2×(c+n). Our

task is to group the incomplete multi-view data into their
corresponding groups.

3.2 Formulation
Generally, multi-view data consist of heterogeneous fea-

ture sets representing the same object, and therefore they
share the same class labels. We denote Y = [Y1, ..., Yc+m+n]

T ∈
{0, 1}(c+m+n)×k the class index of the incomplete multi-
view database, where Yi ∈ {0, 1}k×1 is the class indica-
tor vector for the i-th example and k is the number of
clusters. Then the scaled indicator matrix F is defined as
F = [F1, ..., Fc+m+n]

T = Y (Y TY )−1/2 [28] with the proper-
ty FTF = Ik, where Ik is an identity matrix with a size of
k.

In our objective, we aim to find a F satisfying the above
properties for multi-view clustering and the advantages are
listed as follows. Firstly, F reflects the class indicator of the
multi-view data, which is a higher level semantic representa-
tion of data. Even though data consist of multiple heteroge-
neous features, they should share the same semantic infor-
mation. By introducing this semantic space, we construct a
bridge for different heterogeneous feature sets. Furthermore,
using such an indictor matrix, we can learn the projection
matrix for each view and perform feature selection in a su-
pervised manner, which will be described later.

To learn the indictor matrix, we learn a projection ma-
trix for each view to project their original space to such a
semantic space. The objective is then formulated as:

min ||[X(1)
c , X̂(1)]TU(1) − [F c; F̂ (1)]||2 + β

∥∥U(1)

∥∥
21

+ ||[X(2)
c , X̂(2)]TU(2) − [F c; F̂ (2)]||2+β

∥∥U(2)

∥∥
21

s.t. FTF = Ik, F ≥ 0

(1)

where U(1) ∈ Rd1×k and U(2) ∈ Rd2×k are projection ma-

trices for the two views. F c ∈ Rc×k, F̂ (1) ∈ Rm×k and
F̂ (2) ∈ Rn×k are the learned latent representations for da-
ta examples with complete views, only the first view and
only the second view, respectively. It can be seen that we
explore the relationship between the two views by enforc-
ing the data examples with complete feature sets to have
the same latent representation. ||U(1)||21 =

∑
i ||U(1)(i, :)||,

where U(1)(i, :) is the i-th row of U(1). The ℓ21-norms im-
posed on the projection matrices result in relevant features
being selected for each view as always done by supervised
feature selection [21]. β is a regularization parameter con-
trolling the degree of the sparsity of projection matrices.
When β is big, only a small subset of features will be se-
lected, otherwise a large subset of features will be selected.
F = [F c; F̂ (1); F̂ (2)] ∈ R(c+m+n)×k is the learned latent rep-
resentations for all the data examples, and FTF = Ik and
F ≥ 0 are used to constrain the latent representation to be
consistent with the indicator matrix of the database.

In Equation 1, we project different feature sets into the
same latent space and the relationship between differen-
t views is explored on such space in a direct manner. In
the following part, we add extra regularization constraints
on the projection matrices to further dig the relationship
between data examples in each view and between the two
views to model the structure of the multi-view data. More



specifically, we hope to preserve the intra-view similarity and
the inter-view similarity relationships in the dataset. Their
details are listed as follows.
1) Intra-view similarity relationship: to preserve the local

structure of data examples in each view, we constrain the
neighborhood relationship between data points under each
view also hold in the learned latent space. Generally, the
neighborhood structure can be obtained by using a Gaussian
based kernel matrix. we denote the matrices as W (1) and
W (2) for the two views respectively and the entities in the
matrix indicate the similarity between two data examples
under a specific view. The detailed formulation is:

W
(t)
ij =

{
exp(−z

(t)
ij /2σ2), X̄

(t)
i ∈ Nk(X̄

(t)
j )orX̄

(t)
j ∈ Nk(X̄

(t)
i )

0, otherwise
(2)

where z
(t)
ij is the Euclidean distance between data examples

X
(t)
i and X

(t)
j and Nk(X

(t)
i ) indicates the examples of k

nearest neighbors of X
(t)
i .

2) Inter-view similarity relationship: although differen-
t views of data have different feature sets, they share the
same semantics if they represent the same content or top-
ic. To preserve such inter-view similarity when learning the
projection matrices, we construct similarity matrices W (12)

and W (21) for view 1 to view 2 and view 2 to view 1 respec-
tively. Under the incomplete view setting W (12) = (W (21))T

and they are defined as:

W
(12)
ij =

{
1, if X̄

(1)
i and X̄

(2)
j have same semantics

0, otherwise
(3)

Using the inter-view and intra-view similarities, we define
the overall similarity matrix W as:

W =

[
W (1) W (12)

W (21) W (2)

]
(4)

Based on this similarity, we define the regularization on the
projection matrices as :

Ω(U(1), U(2)) =
∑
ij

W
(1)
ij ||UT

(1)X̄
(1)
i − UT

(1)X̄
(1)
j ||2

+
∑
ij

W
(2)
ij ||UT

(2)X̄
(2)
i − UT

(2)X̄
(2)
j ||2

+
∑
ij

W
(12)
ij ||UT

(1)X̄
(1)
i − UT

(2)X̄
(2)
j ||2

+
∑
ij

W
(21)
ij ||UT

(2)X̄
(2)
i − UT

(1)X̄
(1)
j ||2

(5)

and it is further rewritten as:

Ω(U(1), U(2)) =

2∑
s=1

2∑
t=1

Tr(UT
(s)X̄

(s)Lst(X̄
(t))

T
U(t)) (6)

where L = D − W is the Laplacian matrix and D is a di-
agonal matrix with its i-th diagonal element defined as the
sum of the i-th row of W . Tr is the trace of a matrx.
Adding this regularization constraint to Equation 1, we

obtain the final objective as:

min
U,F

||[X(1)
c , X̂(1)]TU(1) − [F c; F̂ (1)]||2 + β||U(1)||21

+||[X(2)
c , X̂(2)]TU(2) − [F c; F̂ (2)]||2+β||U(2)||21

+γ
2∑

s=1

2∑
t=1

Tr(UT
(s)X̄

(s)Lst(X̄
(t))

T
U(t))

s.t. FTF = Ik, F ≥ 0

(7)

In our objective, we have three terms: using the projec-
tion matrix to project each incomplete view to the latent
space defined by F ; feature selection for each view using the
ℓ21-norm based constraint and the inter-view and intra-view
similarity preserving term defined by the Laplacian matrix.
Besides, the constraints imposed on F guarantee that each
example only belongs to one group.

3.3 Optimization
In this section, we propose to optimize the objective as

described in Equation 7. Since the variables, such as the
projection matrix and the latent representation, are coupled
together, it may be difficult to optimize them at the same
time. Hence, we propose to alternatively optimize the vari-
ables to obtain a local solution.

1) Optimize F with fixed U : the constraints on F
in Equation 7 make the optimization not an easy problem,
especially different views only have part of all the latent
representations, i.e., [F c; F̂ (1)] and [F c; F̂ (2)] are only part of

F . To handle this, we optimize F c, F̂ (1) and F̂ (2) separately
and relax the constraints to the following form:

(F c)TF c = Ik, F ≥ 0 (8)

Even though the orthogonal constraint on F c may not be
rigorous when data examples with complete feature sets do
not have all kinds of class labels. We ignore this slight influ-
ence. In turn, it makes our optimization very compact. As
for F̂ (k), (k = 1, 2), since examples in the same view share
the same projection matrix and these examples follow the
same data distribution, F̂ (k) will have similar characteristic
with F c. In summary, the relaxed constraints will have al-
most the same effect with that of the original ones and can
make the optimization more succinct.

We denote the objective in Equation 7 as O. Then mini-
mizing O over F c, F̂ (1) and F̂ (2) are simplified as:

min
Fc

||(X(1)
c )TU(1) − F c||2 + ||(X(2)

c )TU(2) − F c||2

s.t. (F c)TF c = Ik, F
c ≥ 0

(9)

min
F̂ (1)≥0

||(X̂(1))TU(1) − F̂ (1)||2

min
F̂ (2)≥0

||(X̂(2))TU(2) − F̂ (2)||2
(10)

To optimize F c, we bring in Lagrangian function as:

L(F c) = Tr(Γ((F c)TF c − Ik))

−Tr(ΛF c) +
∑

i=1,2

Tr(−2AT
i F

c + (F c)TF ) (11)

where Γ and Λ are Lagrangian multipliers of the above func-

tion and Ai = (X
(i)
c )TU(i). Applying KKT condition, i.e.,

Λ(s, t)F c(s, t) = 0, we obtain:

(
∑
i=1,2

(−Ai + F c) + F cΓ) (s, t)F c (s, t) = 0 (12)

and we can obtain the following updating rule for F c:

F c(s, t) = F c(s, t)

√√√√√√ (
∑

i=1,2

A+
i + F cΓ−)(s, t)

(
∑

i=1,2

(A−
i + F c) + F cΓ+)(s, t)

(13)

where for a matrix C, C+(s, t) = (|C(s, t)| + C(s, t))/2,
C−(s, t) = (|C(s, t)| − C(s, t))/2 and C = C+ − C−. As



for Γ, its diagonal elements are obtained by summing s:
Γ (s, s) =

∑
i=1,2 ((F

c)TAi − Ik)(s, s). And the off-diagonal
elements of Γ are approximated by ignoring the non-negative
values of F c: Γ(s, t) =

∑
i=1,2 ((F

c)TAi − Ik)(s, t). In sum-

mary, Γ is calculated by Γ =
∑

i=1,2 ((F
c)TAi − Ik).

To optimize F̂ (1) and F̂ (2), we directly obtain their gradi-
ents and the updating rule is:

F̂ (i) = max((X(i)
c )TU(i), 0), i = 1, 2 (14)

2) Optimize U with fixed F : Minimizing the objective
O in Equation 7 with respect to U(1) and U(2) are rewritten
as:

min
U(s)

∑
s=1,2

||(X̄(s))
T
U(s) − F̄ (s)||2 + β

∑
s=1,2

||U(s)||21

+γ
2∑

s=1

2∑
t=1

Tr(UT
(s)X̄

(s)Lst(X̄
(t))

T
U(t))

(15)

where X̄(s), (s = 1, 2) and F̄ (s), (s = 1, 2) are the feature ma-
trix and the latent representation for one view as described
before. They consist of the data examples with both feature
sets and only with the s-th feature set.
Differentiating the objective function in Equation 15 with

respect to U(s) and setting it to zero, we have the following
equation:

X̄(s)((X̄(s))TU(s) − F̄ (s)) + βD(s)U(s)

+γX̄(s)Lss(X̄
(s))TU(s) + γ

∑
t̸=s

X̄(s)Lst(X̄
(t))

T
U(t) = 0

(16)
where D(s) is a diagonal matrix with its i-th diagonal ele-
ment calculated as D(s)(i, i) = 1/(2||U(s)(i, :)||), and U(s)(i, :
) is the i-th row of U(s). Practically, D(s)(i, i) is calculated

by1:

D(s)(i, i) =
1

2
√

||U(s)(i, :)||2 + ε
(17)

where ε is a smoothing term, which is usually set to be a
small positive value.
Then Equation 16 is further written as:

(X̄(s)(X̄(s))T + βD(s) + γX̄(s)Lss(X̄
(s))T )U(s)

= X̄(s)F̄ (s) − γ
∑
t̸=s

X̄(s)Lst(X̄
(t))

T
U(t)

(18)

The objective can be optimized using the following equation:

U(s) = (X̄(s)(X̄(s))T + βD(s) + γX̄(s)Lss(X̄
(s))T )−1

(X̄(s)F̄ (s) − γ
∑
t̸=s

X̄(s)Lst(X̄
(t))

T
U(t))

(19)
Algorithm 1 gives the overall optimization for equation 7.

In Step 3, we calculate the latent representation for the in-
complete multi-view dataset. In Steps 4 and 5, we optimize
the projection matrices U(s), (s = 1, 2). Finally Steps 3, 4
and 5 are repeated until convergence. Based on the latent
representation, the final clustering results can be obtained
by using regular clustering algorithms, e.g., k-means. The
overall clustering algorithm is summarized in Algorithm 2.

1||U(s)(i, :)|| can be zero, which cannot guarantee the con-
vergence of the algorithm. Similar to [9], we add a smoothing
term as in Equation 17.

Algorithm 1 Solving Equation 7 to obtain the latent rep-
resentation of the incomplete multi-view dataset

Input:
Incomplete multi-view dataset {X̄(1), X̄(2)} , parameter
β and γ, the number of classes.

1: t = 1. Initialize U(s), (s = 1, 2) and F randomly;
2: while not converge do
3: Calculate F c, F̂ (1) and F̂ (2) using Equation 13 and 14

respectively;
4: Solve D(s), (s = 1, 2) using Equation 17;
5: Calculate U(s), (s = 1, 2) using Equation 19 respec-

tively;
6: end while
Output:

The latent representation for the incomplete multi-view
dataset F = [F c; F̂ (1); F̂ (2)].

Algorithm 2 Clustering procedure for the incomplete
multi-view dataset
Input:

Incomplete multi-view dataset {X̄(1), X̄(2)} , parameter
β and γ, the number of classes.

1: Obtain the latent representation F of all the data by
using Algorithm 1.

2: Perform k-means clustering on F to obtain the clustering
results.

Output:
Groups of the incomplete multi-view dataset

3.4 Convergence and complexity analysis
In this section, we prove that Algorithm 1 converges to a

local minima.
Theorem 1. The proposed iterative optimization strate-

gy in Algorithm 1 will monotonically decrease the objective
function in Equation 7 in each iteration until convergence.

a) In Step 3 of Algorithm 1, we will resort to auxiliary
function approach [7] to validate that the updating rule for
F c will monotonically decrease the objective value. As for
the updating rule for F̂ (1) and F̂ (2), it is easy to verify that
their objectives are convex and their optimization methods
can decrease the objective function monotonically.

Let

H(F c) = Tr(
∑

i=1,2

(−2AT
i F

c + (F c)TF c)

+Γ((F c)TF c − Ik))
(20)

and it is further rewritten as:

H(F c) = Tr(
∑

i=1,2

(2(A−
i )

T
F c + (F c)TF c) + Γ+(F c)TF c

−Tr(
∑

i=1,2

(2(A+
i )

T
F c + Γ−(F c)TF c)

(21)
Then the following function

h(F c, F̃ c) =∑
i,s,t

(A−
i (s, t)

Fc(s,t)2+F̃c(s,t)2

F̃c(s,t)
+ F̃c(s,t)Fc(s,t)2

F̃c(s,t)
)

−
∑
st

(
∑
i

2Ai(s, t))F̃
c(s, t)(1 + log Fc(s,t)

F̃c(s,t)
)

+
∑
st

(F̃cΓ+)(s,t)Fc(s,t)2

F̃c(s,t)

+
∑
ist

Γ−(s, t)F̃ c(i, s)F̃ c(i, t)(1 + log Fc(i,s)Fc(i,t)

F̃c(i,s)F̃c(i,t)
)

(22)



ia an auxiliary function ofH(F c). Besides, it is easy to verify

that the Hessian matrix of h(F c, F̃ c) is a positive definite

matrix, thus, h(F c, F̃ c) is convex and its global minimum is
obtained as in Equation 13.
Through the definition of the auxiliary function and the

above derivation, we can obtain the following inequality:

H(F c
0 ) = h(F c

0 , F
c
0 ) ≥ h(F c

0 , F
c
1 ) ≥ H(F c

1 )... (23)

Thus, the updating rule for F c will monotonically decrease
the objective value.
b) In Step 5 of Algorithm 1, we will prove that the up-

dating rule in Equation 19 for U(s), (s = 1, 2) will decrease
the objective monotonically.
Taking U(1) as an example, we can derive that:

U t+1
(1) = min

U(1)

||(X̄(1))TU(1) − F̄ (1)||2 + βtr(UT
(1)D

t+1
(1) U(1))

+γ
2∑

s=1

Tr(UT
(1)X̄

(1)L1s(X̄
(s))

T
U(s))

(24)
and Equation 19 is the analytic solution of the above func-
tion. Then we have:

Lt+1+βtr((UT
(1))

t+1Dt+1
(1) U

t+1
(1) ) ≤ Lt+βtr((UT

(1))
tDt+1

(1) U
t
(1))

(25)
where

Lt+1 = |(X̄(1))TU t+1
(1) − F̄ (1)||2

+γTr((UT
(1))

t+1X̄(1)L11(X̄
(1))TU t+1

(1) )

+γTr((UT
(1))

t+1X̄(1)L12(X̄
(2))TU t

(2))

(26)

Substituting Dt+1
(1) into the above inequality, we have:

Lt+1 +
∑
i

∑
j

Ut+1
(1)

(i,j)Ut+1
(1)

(i,j)

2||Ut
(1)

(i,:)||

≤ Lt +
∑
i

∑
j

Ut
(1)(i,j)U

t
(1)(i,j)

2||Ut
(1)

(i,:)||

(27)

Here we introduce a function f(x) = x − x2/(2a), which
satisfies {∀x ∈ R, f(x) ≤ f(a)|a > 0}. Then we make x and
a be ||U t+1

(1) (i, :)|| and ||U t
(1)(i, :)|| respectively, we have the

following inequality:

||U t+1
(1) (i, :)|| −

∑
j

Ut+1
(1)

(i,j)Ut+1
(1)

(i,j)

2||Ut
(1)

(i,:)||

≤
∑
j

||U t
(1)(i, :)|| −

Ut
(1)(i,j)U

t
(1)(i,j)

2||Ut
(1)

(i,:)||

(28)

Add both sides of the above inequality to Equation 27, we
obtain the following inequality:

Lt+1 + β||U t+1
(1) ||21 ≤ Lt + β||U t

(1)||21 (29)

Thus the updating rule for U will decrease the objective
function monotonically.
Combining the above derivation, we prove that Algorithm

1 converges to a local minimum.
Complexity analysis: We briefly discuss the computa-

tional complexity of our algorithm. As for the optimization
of F , the main computation lies in the updating for F c as in
Equation 13, which mainly consists of some matrix multipli-
cation operations. When optimizing U , we need to compute
the overall multi-view similarity matrix, whose complexity
is about O(dmN2

m), where dmN2
m being the product of the

dimensionality and the square of the number of examples for
the m-th view is the largest one among all views. However,

it is a constant matrix and can be computed before the opti-
mization of the variables. Besides, we need to use Equation
19 to calculate U , which solves an inverse problem. Instead,
we can update the projection matrices by solving a linear
system for O(d̂2)(d̂ = max(d1, d2)).

4. EXPERIMENTS

4.1 Datasets
We report experiments on four widely used multi-view

datasets and their descriptions are summarized in Table 1.

Dataset # size # view # cluster # feature size
USPS 2,000 2 10 76+216
Cora 2,708 2 7 2,708+1,433
BBC 2,012 2 5 822+840

WebKB 1,051 2 2 1,840+3,000

Table 1: Information of the multi-view datasets. #
feature size means the dimensionality of the two fea-
ture sets of the database.

UCI Handwritten Digit Dataset2 It consists of fea-
ture sets of handwritten numerals (0-9) extracted from Dutch
utility maps. The database has 2,000 examples even-distributed
in ten categories and is represented in terms of six visual fea-
tures. Being same in [15], we use the 76 Fourier coefficients
of the character shapes and the 216 profile correlations as
two views.

Cora Dataset3 It contains 2,708 scientific publications
divided into 7 classes (Neural Networks, Rule Learning, Re-
inforcement Learning, Probabilistic Methods, Theory, Ge-
netic Algorithms, Case Based). Two heterogeneous feature
sets, i.e., citations and content are utilized here for exper-
iments, where the content feature is represented by 0/1-
valued word vector indicating the absence/presence of the
corresponding word from the 1,433 words constructed dic-
tionary.

BBC Dataset4 It is a synthetic multi-view text database,
which is constructed using single view BBC and BBCSport
corpora. In total, it consists of 2,012 data examples cat-
egorized into 5 classes. The two views used here are the
segments representations of the same document with the
dimensions being 6,838 and 6,790 respectively. We use prin-
cipal component analysis (PCA) to preprocess the data and
the dimension is selected based on the eigenvalues of the
covariance matrix obtained from the data.

WebKB Datasets5 It is a webpage dataset from the
computer science departments of four universities. The dataset
consists of two categories, i.e., course and non-course with t-
wo heterogeneous feature sets, namely the textual content of
the webpage and the link representation. Here the link rep-
resentation is the anchortext on links in the other webpages
linking to the current webpage.

4.2 Settings
To simulate the incomplete multi-view datasets, we ran-

domly select part of examples to have only one single feature

2http://archive.ics.uci.edu/ml/datasets/Multiple+Features
3http://lig-membres.imag.fr/grimal/data.html
4http://mlg.ucd.ie/datasets/segment.html
5http://vikas.sindhwani.org/manifoldregularization.html
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Figure 2: The NMI results on the four databases when both views suffer from the loss of examples. IER
(incomplete example ratio) is the ratio of examples with only one feature set.

set. Similar to [34], two different settings are considered and
listed as follows.
As described in Section 3, we denote m and n the numbers

of examples appearing only in the first view and only in the
second view respectively.
1) the first setting: m > 0, n > 0, namely both views

do not contain all the examples in the database.
2) the second setting: either m = 0 or n = 0, namely

at least one view is complete.
For the above two settings, we randomly select 10% to

90% of the total examples, with 20% as interval, to have
only one feature set. And this process is repeated 10 times
with the average to be reported. Besides, as for the first
setting, we evenly distribute the number of examples for the
two views for simplicity.

4.3 Compared methods
We compare our algorithm with several representative multi-

view clustering methods, which consist of three subspace
learning based methods and three kernel matrix based meth-
ods and their modifications.
SingleV1, SingleV2: We run spectral clustering [25]

on the two views under the condition that all views have
complete data examples.
CCA: We use canonical correlation analysis to obtain the

latent representation of multi-view data and then apply k-
means on the obtained representation.
PairwiseSC, CentroidSC: The multi-view spectral clus-

tering methods based on two regularization frameworks de-
veloped by Kumar et al. [15].
MultiCF: Wang et al. [29] proposed a structure sparsity

based unsupervised feature selection method for the task of
multi-view clustering.
RMSC: Xia et al. [30] developed a multi-view spectral

clustering method, which is based on low rank and sparse
decomposition of the transition matrix.
PVC: Li et al. [34] proposed probably the only incom-

plete multi-view clustering method without filling the miss-
ing information.
PairwiseSC++, CentroidSC++, RMSC++: For

the kernel based multi-view clustering algorithms, Piyush et
al. [23] proposed to fill the kernel matrix of the view with in-
complete examples using the kernel matrix of the view with
complete examples. So in our second setting that one view
is complete, we can use this method to fill the incomplete
kernel matrix. Then the modified PairwiseSC, CentroidSC
and RMSC methods may obtain better clustering results.

Moreover, Shao et al. [24] proposed to fill the kernel matri-
ces even there are no views with complete examples. Then
in our first setting, we may promote PairwiseSC, Centroid-
SC and RMSC methods using this method. We denote the
PairwiseSC, CentroidSC and RMSC methods with the pre-
processing of the kernel matrix under the two settings as
PairwiseSC++, CentroidSC++, RMSC++ respectively.

For the compared methods that are not designed for in-
complete multi-view clustering, i.e., CCA, PairwiseSC, Cen-
troidSC, MultiCF and RMSC, we just use zeros to replace
incomplete feature sets. This may be a little arbitrary, but
we find possibly no methods can well fill various types of
features at the same time, e.g., visual features and textual
features. Besides, it may be fair enough since our method
do not preprocess the data at all. For PairwiseSC, Cen-
troidSC, RMSC and PVC methods, we use the codes the
authors have released to achieve their best performance and
the method CCA is achieved using the LSCCA package6. As
for MultiCF, we implement the method and follow the au-
thors’ suggestions to achieve the clustering results. For our
method, we use KNN based Gaussian kernel to construct
the intra-view similarity matrix and the number of the KN-
N neighbors and the width parameter for Gaussian kernel
are empirically selected as ten percent of the total examples
of the database and one respectively in all the experiments.
As for the trade off parameters β and γ, they are empirically
selected to achieve the best clustering results. We will test
their effects in the parameter study part. Since k-means is
used in all the experiments, it is run 20 times with random
initialization and the mean value is reported.

Finally, by following [34], the normalized mutual informa-
tion (NMI), as one of the most famous clustering evaluation
measures, is utilized. Users can refer to [6] for more details
on its definition.

4.4 Experimental results

4.4.1 Experimental results under the first setting
Figure 2 shows the clustering results of all the methods

under the first setting, i.e., both views suffer from infor-
mation loss. IER (incomplete example ratio) indicates the
percentage of examples having only one feature set. Besides,
the results of all methods with IER being zero are also re-
ported as the upper bound of each method. Overall, it can
be seen that our method performs better than all the com-

6http://www.public.asu.edu/jye02/Software/CCA/ in-
dex.html



SpectralV1 CCA PairwiseSC PairwiseSC++ CentroidSC CentroidSC++ MultiCF RMSC RMSC++ PVC Ours

0 0.2 0.4 0.6 0.8
20

40

60

80

100

USPS

IER

N
M

I 
%

0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

BBC

IER

N
M

I 
%

0 0.2 0.4 0.6 0.8
0

10

20

30

40

Cora

IER

N
M

I 
%

0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

WebKB

IER

N
M

I 
%

Figure 3: The NMI results on the four databases when the first view suffer from the loss of examples. IER
(incomplete example ratio) is the ratio of examples with only one feature set.
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Figure 4: The NMI results on the four databases when the second view suffer from the loss of examples. IER
(incomplete example ratio) is the ratio of examples with only one feature set.

peting methods under different incomplete example ratios
on the four databases.
Compared with the results of SingleV1 and SingleV2 meth-

ods, our method performs better even with up to 50% of ex-
amples only appearing in one feature set on the USPS, Cora
and WebKB datasets. This is an inspiring result, which
indicates that our method can well explore the multi-view
complementary information even in relatively large incom-
plete example ratios.
As for PairwiseSC, CentroidSC and RMSC, we utilize the

method proposed in [24] to fill the kernel matrices of the
incomplete views and accordingly PairwiseSC++, Centroid-
SC++, RMSC++ are developed. From Figure 2, they per-
form better in some databases and the performance gain
seems not very considerable especially when IER being large.
In summary, our method performs better although these k-
ernel based multi-view clustering methods preprocess to fill
the lost information.
As for PVC, it uses non-negative matrix factorization to

find a unified low dimensional space and constrains the ex-
amples with complete views sharing the same representa-
tions to deal with the incomplete multi-view data. Com-
pared with it, we also apply feature selection to select rele-
vant features when learning the low dimensional subspace,
which works confronting the high dimensional and noisy fea-
tures. Besides, the multi-view data structure is also explored
in the proposed method. Thus our method performs better
than PVC.
One of the major differences between our method and the

MultiCF method under complete views is the constraint im-
posed on the learned latent representation. We add the non-

negative constraint, which is more reasonable to approach
the normalized indictor matrix and this may be the rea-
son that our method performs better when the incomplete
example ratio is zero. Since MultiCF is not designed for in-
complete multi-view data, our method also outperforms it
when IER is greater than zero.

4.4.2 Experimental results under the second setting
Figures 3 and 4 display the clustering performance under

the second setting with the first and second view suffering
from incomplete examples respectively. It should be noted
that we apply the method in [23] to fill the kernel matrix
of the incomplete view using that of the complete view for
PairwiseSC, CentroidSC and RMSC to obtain the Pairwis-
eSC++, CentroidSC++, RMSC++ methods.

It can be seen that similar results are obtained as in Fig-
ure 2 except that all the methods obtain relatively better
performance compared with that in the first setting under
the same incomplete example ratio. This may be because
there exists one complete view to aid the multi-view cluster-
ing and it may be more useful compared with the scenario
of no complete views. Overall, our method still obtains the
best clustering performance almost on all the datasets under
this setting.

4.5 Parameter study
In our proposed model as in Equation 7, there are two pa-

rameters β and γ balancing the effect of feature projection
term, ℓ21-norm based feature selection term and graph reg-
ularization based structure preserving term. In this section,
we investigate how the performance varies with the changes



of the above two parameters. Due to space limitation, we
conduct experiments on the four databases under the first
setting and the incomplete example ratios are selected as 0
and 0.3 respectively. It should be noted that similar results
can be obtained under the second setting. The results are
shown in Figure 5.

Figure 5: The NMI results on the four databases
under the first setting with the incomplete example
ratio being 0 and 0.3 respectively.

β controls the sparsity of the projection matrices. When
it is small, the constraint will lose the effect of feature selec-
tion. In the case when β is too big, the sparse characteristic
will lead to the loss of useful features and harm the learned
latent representations. γ is the weight for the graph regular-
ization term, which keeps the inter-view and intra-view data
structure of the original spaces in the learned space. When
it is too big, it may rely on too much of the neighborhood re-
lationship obtained using the similarity metric and this may
harm the intrinsical data structure because of the possible
inaccuracy of the calculated similarity matrix. In summary,
β and γ should be carefully selected and [0.001,0.01] is an
optimal interval when the multi-view data is normalized.

4.6 Convergence study
As discussed in Section 3.4, the optimization strategy con-

verges to a local minima. In this section, we give the conver-
gence and the corresponding NMI curves with the varying
updating iterations. Due to space limitation, we only give
the results under the first setting with incomplete example
ratio being 30% and similar results can be achieved under
the second setting. From Figure 6, it can be seen that the
objective function converges fast, and the clustering perfor-

mance needs about 100 iterations to reach the best results.
This may because the initial values of the variables in Al-
gorithm 1 are randomly set. In the future, we may consider
a nice initialization method to reduce the number of itera-
tions.

0 50 100 150 200 250 300

0

2000

4000

6000

8000

10000

12000

14000

O
b

je
ct

iv
e

USPS

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

N
M

I 
(%

)

0 50 100 150 200 250 300

0

2000

4000

6000

8000

O
b

je
ct

iv
e

BBC

0 50 100 150 200 250 300
0

20

40

60

80

N
M

I 
(%

)

0 50 100 150 200 250 300

0

5000

10000

15000

O
b

je
ct

iv
e

Cora

0 50 100 150 200 250 300
0

10

20

30

N
M

I 
(%

)

0 50 100 150 200 250 300

0

500

1000

1500

2000

O
b

je
ct

iv
e

WebKB

0 50 100 150 200 250 300
0

20

40

60

80

N
M

I 
(%

)

Figure 6: Convergence and the corresponding NMI
curves for the four databases under the first setting
with incomplete example ratio being 0.3.

5. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a novel incomplete multi-

view clustering algorithm to cluster incomplete multi-view
data. In our model, we learn a latent representation of the
data examples, which serves as an approximation of the nor-
malized indictor matrix. Besides, the complementary in-
formation between different views is explored by enforcing
examples with complete views sharing the same represen-
tations. Through the ℓ21-norm based constraint, relevant
features are selected for the projection to the latent space.
Furthermore, we add a graph regularization term to pre-
serve the inter-view and intra-view data structure, which
further promotes the clustering performance. Extensive ex-
periments have validated the effectiveness of the proposed
method compared with the state-of-the-art methods. Since
it is practical to obtain partial label or must-link and cannot-
link information between data examples, we may consider
adding such information to promote clustering in the future.
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