
Learning to Hash for Recommendation with
Tensor Data

Qiyue Yin, Shu Wu and Liang Wang

Center for Research on Intelligent Perception and Computing,
National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
{qyyin,shu.wu,wangliang}@nlpr.ia.ac.cn

Abstract. Recommender systems usually need to compare user inter-
ests and item characteristics in the context of large user and item s-
pace, making hashing based algorithms a promising strategy to speed
up recommendation. Existing hashing based recommendation methods
only model the users and items and dealing with the matrix data, e.g.,
user-item rating matrix. In practice, recommendation scenarios can be
rather complex, e.g., collaborative retrieval and personalized tag recom-
mendation. The above scenarios generally need fast search for one type of
entities (target entities) using multiple types of entities (source entities).
The resulting three or higher order tensor data makes conventional hash-
ing algorithms fail for the above scenarios. In this paper, a novel hashing
method is accordingly proposed to solve the above problem, where the
tensor data is approached by properly designing the similarities between
the source entities and target entities in Hamming space. Besides, oper-
ator matrices are further developed to explore the relationship between
different types of source entities, resulting in auxiliary codes for source
entities. Extensive experiments on two tasks, i.e., personalized tag rec-
ommendation and collaborative retrieval, demonstrate that the proposed
method performs well for tensor data.

Keywords: Learning to hash; Tensor data; Recommendation

1 Introduction

To reduce the information overload and help users select potential appealing
products, recommender systems play an important role by recommending rel-
evant products to users. Till now, promising progresses have been made from
both academia and industry. Generally, recommendation needs to compare a
large number of items to determine the users’ most preferred ones and this pro-
cess will be very time consuming in the context of large user and item space.
Efficiency in recommendation is accordingly becoming a challenging problem.

Several works have been proposed dealing with the efficiency problem, which
can be roughly classified into data structure based methods and hashing based
methods [22]. As for the data structure based methods, researchers try to shrink

2 Qiyue Yin, Shu Wu and Liang Wang

the search space to reduce the comparison [20] [18] [7]. Typical examples are the
kd-tree methods and some other partition methods [6] [8] [7]. Recently, hashing
based methods show more superior than the data structure based methods [11].
For example, they can obtain low time complexity that is irrespective of the
size of datasets and they need little memory space for the storage of the binary
hash codes. Few researchers have tried using the hashing technology for fast
recommendation [13] [25] [24]. Readers can refer to Section 2 for more details.

To the best of our knowledge, exiting hashing based recommendation meth-
ods only learn binary codes for users and items, and they mainly focus on matrix
data. For example, they learn hash codes for users and items so that their simi-
larity in Hamming space can approach the rating matrix. In practice, recommen-
dation can be rather complex to be represented by matrix data, for example,
recommending items to users under specific queries in collaborative retrieval
[17] [4] and recommending tags to images by specific users in personalized tag
recommendation [10]. All these scenarios results in three or higher order tensor
data with each dimension indicating one type of entities. Taking personalized
tag recommendation as an example, the resulting three order tensor has values
1 or 0 indicating whether a tag is related to an image by a specific user or not.

In summary, the above scenarios involve fast search for one type of entities
(target entities) using multiple types of entities (source entities) and usually ten-
sor data is given representing the implicit or explicit relationship between the
source entities and target entities. Then conventional hashing based recommen-
dation methods may fail for their disability dealing with tensor data. Besides,
traditional hashing methods developed for multiple types of entities, i.e., cross-
model hashing methods [9] [15], usually model the relationship between each
two types of entities, which is different from our scenario and cannot be applied
directly. Readers can refer to Section 2 for more details. Hence, in this paper,
a novel hashing method for tensor data is proposed. We learn hash codes for
each dimension of the tensor data. To preserve the relationships between source
entities and target entities, their similarity calculation in the Hamming space
is properly designed by bringing in operator matrices. Finally, extensive experi-
ments on two complex recommendation tasks validate our proposed method.

Our contributions: 1) To the best of our knowledge, this is the first time
to learn hash codes for tensor data and meanwhile it is successfully applied to
complex recommendation problems. 2) We design operator matrices to explore
the relationship between different types of source entities and auxiliary codes
are accordingly constructed to enhance the recommendation performance. 3) We
test our model in terms of personalized tag recommendation and collaborative
retrieval, and extensive experimental results validate our proposed method.

2 Related work

In the context of large user and item space, it becomes urgent to improve the rec-
ommendation efficiency when compares user interests and item characteristics.
As described before, the methods can be roughly classified into data structure

Learning to Hash for Recommendation with Tensor Data 3

based methods [20] [18] [19] [7] and hashing based methods [25] [24]. As for the
former ones, some researches utilize simple partitioning based methods, which
partition the items or users into groups [6] [8]. These methods can reduce the
item space or user space, but they may inevitable harm the recommendation
performance. Recently, some special data structures, such as kd-tree and its
variants are utilized for fast search [7] [5]. However, these methods are still time
consuming when dealing with high dimensional and large scale datasets [3].

Recently, hashing technology has been brought to recommendation field and
shows superior than the data structure based methods. Generally, hashing is
one kind of the most popular methods for large scale nearest neighbor search
problems, which learns binary codes as the new representations of entities [11].
Initiated by Locality Sensitive Hashing (LSH) [1], which is a family of hash
functions mapping similar points to the same hash codes with high probability,
some machine learning methods are now employed to design more effective hash
codes [16] [2] [23]. As in recommendation field, Zhou and Zha [25] gave the
first try and learned binary codes for users and items for fast item ranking.
Zhang et al. [24] learned hash codes given the implict or explicit feedback matrix
to preserve the users’ preferences over items. Furthermore, Wang et al. [13]
[12] proposed to learn compact hashing codes for efficient tag completion and
recommendation. Generally, previous hashing based recommendation methods
mainly focus on the matrix data, e.g., user-item rating matrix and image-tag
tag matrix. However, recommendation scenarios are more complex and usually
tensor data is given, making conventional hashing methods failed. This is the
motivation that promotes us to propose new hashing methods for tensor data.

Since we are learning to hash for multiple modalities, the research of cross-
model hashing proposed to meet the need of similarity search across different
types of entities is one of the most related works [9] [15]. However, exiting cross-
model hashing methods mainly focus on modeling the pairwise relationship, i.e.,
the relationship between two types of entities. For example, when people uses
texts, images and videos for cross-model retrieval, the pairwise relationships
between texts and images, between texts and videos and between images and
videos are developed. Instead we are concentrating on the scenarios that use
multiple types of entities to retrieve one type of entities and typical examples are
personalized tag recommendation and collaborative retrieval. Generally, different
scenarios lead to distrinct hashing methods to adjust their data structures, which
makes previous cross-model hashing methods cannot be applied directly to solve
the problem we are focusing on. Thus, we develop new hashing methods for
multiple modalities and meanwhile enable for fast recommendation.

3 Model

3.1 Notations

We are given n order tensor data R with each dimension representing a type of
entities and their values indicating the relationships between the n− 1 types of
entities and the other one type of entities. We call the n − 1 types of entities

4 Qiyue Yin, Shu Wu and Liang Wang

source entities and the other one type of entities target entities. Our goal is
to learn hash codes for each type of entities to preserve their relationship and
meanwhile enable for fast similarity search. For example, for personalized tag
recommendation, we have three types of entities: users and images as source
entities and tags as target entities. Accordingly, a three order tensor is given
indicating whether a tag is annotated to an image under a specific user or not.
We need to learn hash codes for each user, each image and each tag so that tags
can be rapidly recommended to images given specific users.

Suppose the n − 1 source entities and the target entities are represented
as X(k) (k = 1, ..., n− 1) and X(n) respectively and mk(k = 1, ..., n) denotes
the number of entities of the k-th type. Then we need to learn hash codes
H(k) (k = 1, ..., n) for all of them. Apart from the binary constraint on H(k), the
key issue is to keep the similarity between the source entities and the target
entities in Hamming space so that their relationship is consistent with the n
order tensor data R. In the following, we will elaborate our strategy achieving
this goal.

3.2 Similarity preserving

Since the tensor data R indicates the implict or explicit relationship between all
the source entities and the target entities, a natural way to calculate similarity
between them is to compute the similarity between each type of source entities
and the target entities and then sum them. By doing so, the relationship between
the source entities and the target entities can be explored in a straight-forward
manner. Then for the s1, ...sn-th value of the tensor data R, its predicted value

∧
Rs1,...sn can be obtained by:

∧
Rs1,...sn =

∑
k=[1:n−1]

sim(H(k)
sk

,H(n)
sn) (1)

where sk is an indictor of an entity of the k-th type and H
(k)
sk is the sk-th hash

code for the k-th entity in the k-th type. sim is an operator calculating the
similarity between two hash codes to be introduced later.

In the above formulation, we directly consider the relationship between each
type of source entities and the target entities. However, the interaction between
different types of source entities are ignored, which may be essential to explore
the relationship between the source entities and the target entities. For example,
for collaborative retrieval, users behave quite different under different queries and
clearly queries can influence users. To model the influence, we propose operator

matrix for each source entity. For example, T
(j)
sj , served as the operator matrix

of the sj-th entity in the j-th type, represents the influence this entity will bring
to other types of source entities. Furthermore, given an entity Rs1,...sn , we model
the influence the other source entities to the sk-th source entity of the k-th type

as
∑

j ̸=k T
(j)
sj . By multiplying this matrix with the hash codes of the sk-th entity

Learning to Hash for Recommendation with Tensor Data 5

in the k-th type and binary it, we can obtain a new hash codes as auxiliary codes

for H
(k)
sk :

aux(H(k)
sk

) = sign

 ∑
j=[1:n−1],j ̸=k

T (j)
sj H(k)

sk

 (2)

where sign is an element-wise symbolic operation for a vector with each element
returning 1 or −1 based on whether its value is bigger than 0 or not.

Taking the interaction between different types of source entities into consid-
eration, we modify Equation 1 as:

∧
Rs1,...sn =

∑
k=[1:n−1]

sim(H(k)
sk

,H(n)
sn) + µ

∑
k=[1:n−1]

sim
(
aux(H(k)

sk
),H(n)

sn

)
(3)

where µ is a positive value balancing the effect of the auxiliary similarity term.
In Equation 3, a natural way to define the similarity between two hash codes

is the fraction of common bits between them, which is widely used in many

hashing based methods [25] [13]. As an example, given hash codes H
(k)
sk and

H
(n)
sn , their similarity is defined as:

sim
(
H(k)

sk
, H(n)

sn

)
=

1

B

B∑
i=1

I
((

H(k)
sk

)
i
,
(
H(n)

sn

)
i

)
=

1

2
+

1

2B

(
H(k)

sk

)T

H(n)
sn (4)

where B is the number of bits of the hash codes and
(
H

(k)
sk

)
i
is the i-th bit of

H
(k)
sk . I is an indicator function returning 1 if the two operator numbers are the

same otherwise 0.
After the calculation of similarity between the source entities and the target

entities, many kinds of loss functions can be applied to construct the objective.
Here we just use the simple square loss and it is written as

min
{H(k)}n

k=1,{T (i)}n−1
i=1

∑
(s1...sn)∈O

(Rs1...sn − σ
∧

Rs1...sn)
2

+ λ
∑

i=[1:n−1]

∑
j∈{sj}

||T (i)
j ||2

(5)
where O is the observed entities of the tensor data R. σ is a scaler parameter to
limit the predicted similarity to be in the interval [0,1]. The last term is a regular
regularization on the operator matrices with a positive tradeoff parameter λ.

As for the constraints imposed on the hash codes, apart from the constrain-
t that the elements of all the hash codes are {-1, +1}, it is necessary to re-
strict the hash codes to be balanced, which makes sure that each bit carries
as much information as possible. In summary, the constraints are defined as
H(k) ∈ Ω(k), ∀k = 1, ..., n with Ω(k) being:

Ω(k) =
{
H(k) ∈ {−1, 1}B×mk , H(k)1 = 0

}
(6)

where the constraint H(k)1 = 0 is used to preserve the balance of each bit.

6 Qiyue Yin, Shu Wu and Liang Wang

3.3 Final objective and optimization

Bringing Equation 3, 4 and 6 into Equation 5, we can obtain the final cost
function. Because of the binary constraint on the variables, the cost function
in Equation 5 is not differentiable. Moreover, the balance constraint and the
sign operator make the optimization of the objective a non-trivial problem. To
solve these problems, we firstly relax the sign operator to real values as most
hashing leaning methods have done [21] [14]. Furthermore, the two constraints
are converted into soft penalty terms as in [9]. Specifically, we add the following
two terms to the cost function.

θ1({H(k)}) =
n∑

k=1

||H(k) ⊙H(k) − E||2 θ2({H(k)}) =
n∑

k=1

||H(k)1||2 (7)

where E ∈ RB×mk is an all-one matrix and 1 ∈ Rmk×1 is an all one vector.
And the final cost is written as:

L =
∑

(s1s2...sn)∈O

(Rs1...sn − σ
∧

Rs1...sn)
2

+

λ
∑

i=[1:n−1]

∑
j∈{sj}

||T (i)
j ||2 + θ1({H(k)}) + θ2({H(k)})

(8)

Since the final cost is in Equation 8 is not jointly convex with respect to all
the variables, we use the stochastic gradient descent method to obtain a local
optimal solution and the gradients are calculated as

∂L

∂H
(k)
sk

=
∑

{sj}
n−1
j=1 ,j ̸=k

−2σ(Rs1...sn − σ
∧

Rs1...sn)
∂(

∧
Rs1...sn)

∂H
(k)
sk

+ 4θ1(H
(k)
sk ⊙H

(k)
sk − Esk)H

(k)
sk + 2θ2H

(k)1

(9)

∂L

∂H
(n)
sn

=
∑

{sj}
n−1
j=1

−2σ(Rs1...sn − σ
∧

Rs1...sn)
∂(

∧
Rs1...sn)

∂H
(n)
sn

+ 4θ1(H
(n)
sn ⊙H

(n)
sn − Esn)H

(n)
sn + 2θ2H

(n)1

(10)

∂L

∂T
(j)
sj

=
∑

{sk}
n−1
k=1

,k ̸=j

−2σ(Rs1...sn − σ
∧

Rs1...sn)
∂(

∧
Rs1...sn)

∂T
(j)
sj

+ 2λT (j)
sj (11)

where the gradient components in the above equation are given as

∂(
∧

Rs1...sn)

∂H
(k)
sk

=
1

2B
H(n)

sn +
u

2B

∑
j=[1:n−1],j ̸=k

(T (j)
sj)

T
H(n)

sn (12)

∂(
∧

Rs1...sn)

∂H
(n)
sn

=
1

2B

∑
k=[1:n−1]

H(k)
sk +

u

2B

∑
k=[1:n−1]

∑
j=[1:n−1],j ̸=k

(T (j)
sj)H(k)

sk (13)

∂(
∧

Rs1...sn)

∂T
(j)
sj

=
u

2B
H(n)

sn

∑
k=[1:n−1],k ̸=j

(H(k)
sk)

T
(14)

Learning to Hash for Recommendation with Tensor Data 7

After solving the relaxed optimization problem as in Equation 8, we can ob-

tain real-valued representations for all the entities denoted as
∼

H(k)(k = 1, ..., n).
Finally, using the constraints of Equation 6, we can obtain the final hashing
codes as:

H
(k)
ij =

{
1

∼

H
(k)
ij > median(

∼

H
(k)
tj : t ∈ 1 : mk)

−1 Otherwise
(15)

where H
(k)
ij is the j-th bit of the i-th entity in type of k. The whole algorithm is

summarized in Algorithm 1.

Algorithm 1 Learning to Hash for Recommendation with Tensor Data

Input:
Observed tensor data R, parameters λ, θ1, θ2 and µ.

1: Initialize H(k) (k = 1, ..., n) and T (k) (k = 1, ..., n− 1);
2: Optimize Equation 8 using stochastic gradient method with their gradients calcu-

lated by Equation 9, 10 and 11;
3: Obtain the binary hashing codes using Equation 15 with the relaxed solution ob-

tained from the above step;
4: Obtain the auxiliary codes using Equation 2;
Output:

Hash codes for all the entities H(k) (k = 1, ..., n), auxiliary codes for all source
entities H(k) (k = 1, ..., n− 1).

4 Experiments

4.1 Datasets

We report experimental results on two widely used recommendation datasets
and the statistics of the databases are summarized in Table 1.

Last fm: It contains music artist listening information and tagging infor-
mation sampled from Last.fm online music system. Each user has tagged some
music artists and data tuples [user, artist, tag] are given. We use this dataset to
test the performance of our method in terms of personalized tag recommenda-
tion. Similar to [10], we use a p-core1 for Last fm to filter the dataset and p is
chosen as 20 here.

MovieLens: It is published by GroupLens research group and contains per-
sonalized ratings to movies. Besides, the user tagging information is also provid-
ed and accordingly data tuples [tag, user, movie] can be obtained. We use this
dataset for the experiments of collaborative retrieval. Similar to [4], the most
common 50 tags are selected as the genre of the movies and [genre, user, movie]
triple are utilized to mimic [query, user, item] triples for collaborative retrieval.
Besides, the data preprocessing is the same as in [4].

1The p-core of a dataset D is the largest subset of D with the property that each
entity has to occur in at least p posts. And a post is defined as a combination of
different types of source entities [10].

8 Qiyue Yin, Shu Wu and Liang Wang

Last fm MovieLens

of posts # of pairs sparsity # of posts # of pairs sparsity

19, 938 54, 019 99.95% 2, 111 20, 583 99.54%

Table 1. Information of the Last fm and MovieLens datasets.

4.2 Experimental settings

To evaluate the performance of the proposed model, we compare our method
with the following state-of-the-art hashing based recommendation algorithms.

CFCodeReg: Zhou and Zha [25] proposed to learn binary codes for collabo-
rative filtering. BCE-FIT: Wang et al. [13] learned binary codes embedding for
tag recommendation. It should be noted that the above two methods learn hash
codes for matrix data, i.e., rating matrix and tag matrix respectively. However,
for personalized tag recommendation and collaborative retrieval problems, three
order tensor data is provided. So we may compress the tensor data into matrix
form for a comparison. Like in traditional recommendation, the factors of us-
er and query are ignored in personalized tag recommendation and collaborative
retrieval respectively. LCR-B: Weston et al. [17] proposed the first latent collab-
orative retrieval algorithm (LSR). However, the learned latent representations
are real values, which makes the comparison with our method unfair. Usually,
the learned latent representations are in the interval [-1,+1], so we binary the
real values with the constraints in Equation 6 that we have used. The learned bi-
nary codes is then compared with our method. LHTD: Our proposed Learning
to Hash for recommendation with Tensor Data with the similarity calculated in
Equation 1. LHTDi: Our proposed Learning to Hash for recommendation with
Tensor Data with the similarity calculated considering the interaction between
different types of source entities as in Equation 3.

In all the experiments, we use Recall as in [4] as the evaluation metric. For a

given test triple (X
(1)
s1 , X

(2)
s2 , ..., X

(n−1)
sn−1 , X

(n)
i), we calculate the similarity for all

i and sort the target entities in descending order. Then, we measure Recall@k,
which is 1 if the target entity in the top k and 0 otherwise. Finally, the mean
Recall@k over the whole test dataset is reported. In the parameter setting, we
empirically set λ = 1 and θ1 = θ2 = 0.001 in all the datasets. As for µ, it
controls the importance of the interaction term and is searched in the interval
[0, 1]. For all the compared methods, we follow the suggests their authors have
given to achieve their best performance. All the experiments are run 10 times
with randomly choosing 80% of the observed entities as the training set and the
remaining as the testing set.

4.3 Numerical results and analysis

From Figure 1, it can be seen that our method outperforms all the compared
methods in both databases in terms of personalized tag recommendation and
collaborative retrieval. Compared with LHTD, LHTDi considers the interaction

Learning to Hash for Recommendation with Tensor Data 9

5 10 15 20 25 30 35
10

15

20

25

30

35

40

Recall@5 on Last_fm dataset

of bits

R
e

ca
ll

@
5

 %

CFCodeReg

BCE-FIT

LCR-B

LHTD

LHTDi

5 10 15 20 25 30 35
20

30

40

50

60

Recall@10 on Last_fm dataset

of bits

R
e

ca
ll

@
1

0
 %

CFCodeReg

BCE-FIT

LCR-B

LHTD

LHTDi

5 10 15 20 25 30 35
0

5

10

15

20

Recall@5 on MovieLens dataset

of bits

R
e

ca
ll

@
5

 %

CFCodeReg

BCE-FIT

LCR-B

LHTD

LHTDi

5 10 15 20 25 30 35
0

5

10

15

20

25

30

Recall@10 on MovieLens dataset

of bits

R
e

ca
ll

@
1

0
 %

CFCodeReg

BCE-FIT

LCR-B

LHTD

LHTDi

Fig. 1. Recommendation results on Last-fm and MovieLens datasets.

between different types of source entities and the resulting auxiliary codes can
well explore the relationship between the source entities, thus its performance is
better than that of LHTD.

Compared with our method, CFCodeReg and BCE-FIT cannot consider
hashing for all types of entities and this may inevitable harm the relationship
between them. So the hash codes learned by their methods can not properly ap-
proach the tensor data and their performance is relatively poor. As for LCR-B,
it learns latent representations for all types of entities and considers one-side
interaction between different types of source entities. Compared with it, our
method takes all pairwise interactions between different types of source entities
into consideration and can better reflect their relationship. Besides, the hash
codes learning of LCR-B is a two-stage process, and more information will be
lost compared with our method that considers learning the hash codes in one
objective. And these may be the reasons that our method performs better than
that of LCR-B.

4.4 Parameter selection

In our model, λ is a regularization parameter used to avoid over-fitting and θ1
and θ2 are parameters controlling the soft penalty terms. All these variables
are empirically set as in Section 4.2. There is also an important parameter µ
that balances the effect of the auxiliary similarity term. And in this section, we
test how parameter u influences the performance of our method. We choose the
number of hash codes to be 8 and 32 and vary u in the interval [0, 1] on both
datasets. The results are shown in Figure 2. When the number of hash codes is
small, the performance of LHTDi is becoming better with the increasing of u.

10 Qiyue Yin, Shu Wu and Liang Wang

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
15

20

25

30

35

40

45

50

55

Recall vs. parameter u on Last_fm dataset

Parameter u

R
e

ca
ll

@
1

0
 %

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

25

30

Recall vs. parameter u on MovieLens dataset

Parameter u

R
e

ca
ll

@
1

0
 %

LHTD-8

LHTDi-8

LHTD-32

LHTDi-32

LHTD-8

LHTDi-8

LHTD-32

LHTDi-32

Fig. 2. Recommendation results vs. parameter u on Last fm and MovieLens datasets.
The numbers behind LHTD and LHTDi are the number of bits selected.

However, once the number of hash codes is big enough, we can see that LHT-
Di reaches the best performance when u is relatively small. This is reasonable
because the basic similarity between source entities and target entities can not
well approach the tensor data using very few bits and the interaction term is
accordingly becoming important. When the number of hash codes is relatively
big, the basic hash codes can well embed the information of different entities
and the effect of auxiliary codes is accordingly inapparent.

4.5 Operation ability of different types of operator matrices

In our method, we propose operator matrices to model the interaction between
different types of source entities, resulting in auxiliary codes to further improve
the recommendation performance. In this section, we quantize the effect of the
operator matrices and observe their relationship. For an entity of one type, we
firstly calculate the change between its operator matrix multiplying the hash
codes of the other types of entities and the hash codes of other types of entities
themselves. Then we average the changes obtained by all this type of entities
as the final operating effect of this type of entities. The comparison between
different types of source entities are listed in Table 2.

From Table 2, it can be seen that operator matrices of different types of
source entities are not equally important. 1) In personalized tag recommenda-
tion, user operator matrices are more important than that of artist. Compared
with conventional tagging system, personalized tag recommendation adds the
factor of user, which influences the tagging for the same artist. This may be the
reason that user operator matrices are the main factors for the interaction. 2) As
in collaborative retrieval, we observe that query operator matrices are more im-
portant than that of user. Since collaborative retrieval has the entities of queries
compared with traditional recommendation, it shares the similar reason as in
personalized tag recommendation for the comparison.

Learning to Hash for Recommendation with Tensor Data 11

Last fm MovieLens

Bit 8 16 24 32 Bit 8 16 24 32

User Operator 3.17 6.59 9.54 12.87 Query Operator 3.59 7.17 10.63 14.31

Artist Operator 2.76 5.80 8.18 11.55 User Operator 3.06 6.34 8.91 12.11

Table 2. Influence of operator matrices on Last fm and MovieLens databases.

5 Conclusion

In this paper, we have proposed a novel hashing method for tensor data, which
retrieve one type of entities (target entities) using the query of many other types
of entities (source entities) and has been successfully applied for complex rec-
ommendation problems, i.e., personalized tag recommendation and collaborative
retrieval. In our model, we learn hash codes for each dimension of entities and
properly design the similarity between them to approach the tensor data. Fur-
thermore, to explore the relationship between different types of source entities,
operator matrices are developed, resulting in auxiliary codes for all the source
entities to further enhance the recommendation performance. Extensive experi-
ments have demonstrated the effectiveness of our method compared with several
state-of-the-art hashing algorithms. Since different source entities of the same
type may share common characteristics, it may be necessary to build an oper-
ator tensor as a dictionary instead of a list of operator matrices to reduce the
computation. We leave this as future work.

6 Acknowledgments

This work is jointly supported by National Basic Research Program of China
(2012CB316300), and National Natural Science Foundation of China (61175003,
61420106015, U1435221, 61403390).

References

1. Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via
hashing. International Conference on Very Large Data Bases 99, 518–529 (1999)

2. Gong, Y., Lazebnik, S.: Iterative quantization: A procrustean approach to learning
binary codes. Computer Vision and Pattern Recognition pp. 817–824 (2011)

3. Grauman, K., Fergus, R.: Learning binary hash codes for large-scale image search.
Machine Learning for Computer Vision pp. 49–87 (2013)

4. Hsiao, K.J., Kulesza, A., Hero, A.: Social collaborative retrieval. International Con-
ference on Web Search and Data Mining pp. 293–302 (2014)

5. Koenigstein, N., Ram, P., Shavitt, Y.: Efficient retrieval of recommendations in
a matrix factorization framework. International Conference on Information and
Knowledge Management pp. 535–544 (2012)

6. Linden, G., Smith, B., York, J.: Amazon. com recommendations: Item-to-item
collaborative filtering. Internet Computing 7(1), 76–80 (2003)

12 Qiyue Yin, Shu Wu and Liang Wang

7. Liu, T., Moore, A.W., Yang, K., Gray, A.G.: An investigation of practical approx-
imate nearest neighbor algorithms. Advances in Neural Information Processing
Systems pp. 825–832 (2004)

8. Ntoutsi, E., Stefanidis, K., Nørv̊ag, K., Kriegel, H.P.: Fast group recommendations
by applying user clustering. Conceptual Modeling pp. 126–140 (2012)

9. Ou, M., Cui, P., Wang, F., Wang, J., Zhu, W., Yang, S.: Comparing apples to
oranges: a scalable solution with heterogeneous hashing. International Conference
on Knowledge Discovery and Data Mining pp. 230–238 (2013)

10. Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Learning
optimal ranking with tensor factorization for tag recommendation. International
Conference on Knowledge Discovery and Data Mining pp. 727–736 (2009)

11. Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: A survey. arXiv
preprint arXiv:1408.2927 (2014)

12. Wang, Q., Ruan, L., Zhang, Z., Si, L.: Learning compact hashing codes for effi-
cient tag completion and prediction. International Conference on Information &
Knowledge Management pp. 1789–1794 (2013)

13. Wang, Q., Shen, B., Wang, S., Li, L., Si, L.: Binary codes embedding for fast
image tagging with incomplete labels. European Conference on Computer Vision
pp. 425–439 (2014)

14. Wang, Q., Si, L., Zhang, D.: Learning to hash with partial tags: Exploring cor-
relation between tags and hashing bits for large scale image retrieval. European
Conference on Computer Vision pp. 378–392 (2014)

15. Wei, Y., Song, Y., Zhen, Y., Liu, B., Yang, Q.: Scalable heterogeneous translated
hashing. International Conference on Knowledge Discovery and Data Mining pp.
791–800 (2014)

16. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. Advances in Neural Infor-
mation Processing Systems pp. 1753–1760 (2009)

17. Weston, J., Wang, C., Weiss, R., Berenzweig, A.: Latent collaborative retrieval.
International Conference on Machine Learning (2012)

18. Yin, H., Cui, B., Chen, L., Hu, Z., Huang, Z.: A temporal context-aware model for
user behavior modeling in social media systems. pp. 1543–1554 (2014)

19. Yin, H., Cui, B., Chen, L., Hu, Z., Zhou, X.: Dynamic user modeling in social
media systems. ACM Transactions on Information Systems 33(3), 10 (2015)

20. Yin, H., Sun, Y., Cui, B., Hu, Z., Chen, L.: Lcars: a location-content-aware recom-
mender system. ACM SIGMOD International Conference on Knowledge discovery
and data mining pp. 221–229 (2013)

21. Zhai, D., Chang, H., Zhen, Y., Liu, X., Chen, X., Gao, W.: Parametric local multi-
modal hashing for cross-view similarity search. International Joint Conference on
Artificial Intelligence pp. 2754–2760 (2013)

22. Zhang, D., Yang, G., Hu, Y., Jin, Z., Cai, D., He, X.: A unified approximate nearest
neighbor search scheme by combining data structure and hashing. International
Joint Conference on Artificial Intelligence pp. 681–687 (2013)

23. Zhang, D., Wang, J., Cai, D., Lu, J.: Self-taught hashing for fast similarity search.
International Conference on Research and Development in Information Retrieval
pp. 18–25 (2010)

24. Zhang, Z., Wang, Q., Ruan, L., Si, L.: Preference preserving hashing for efficient
recommendation. International Conference on Research & Development in Infor-
mation Retrieval pp. 183–192 (2014)

25. Zhou, K., Zha, H.: Learning binary codes for collaborative filtering. International
Conference on Knowledge Discovery and Data Mining pp. 498–506 (2012)

