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Abstract—Graph-based fraud detection has heretofore received
considerable attention. Owning to the great success of Graph
Neural Networks (GNNs), many approaches adopting GNNs for
fraud detection has been gaining momentum. However, most
existing methods are based on the strong inductive bias of
homophily, which indicates that the context neighbors tend to
have same labels or similar features. In real scenarios, fraudsters
often engage in camouflage behaviors in order to avoid detection
system. Therefore, the homophilic assumption no longer holds,
which is known as the inconsistency problem. In this paper, we
argue that the performance degradation is mainly attributed to
the inconsistency between topology and attribute. To address
this problem, we propose to disentangle the fraud network
into two views, each corresponding to topology and attribute
respectively. Then we propose a simple and effective method
that uses the attention mechanism to adaptively fuse two views
which captures data-specific preference. In addition, we further
improve it by introducing mutual information constraints for
topology and attribute. To this end, we propose a Disentangled
Information Graph Neural Network (DIGNN) model, which
utilizes variational bounds to find an approximate solution to our
proposed optimization objective function. Extensive experiments
demonstrate that our model can significantly outperform state-
of-the-art baselines on real-world fraud detection datasets.

Index Terms—Graph Neural Networks, Fraud Detection, In-
formation Theory

I. INTRODUCTION

Graph-based fraud detection is a crucial task and has

tremendous impact in various applications, such as opinion

fraud detection [1], fake news detection [2], review spams [3]

and financial fraud detection [4], [5]. In these scenarios, as

graph can effectively model the correlations among entities,

interactive activities on platform can be characterized as a

graph, where users or objects are often treated as nodes, and

transactions or relations between them are treated as edges.

Numerous techniques have been proposed to detect the

fraudsters. Recently, driven by the powerful representation

capability of graph structure and advances of Graph Neural

Networks (GNNs) [6]–[8], many approaches try to harness

†The first two authors contributed equally to this work.
*Corresponding author.

GNNs for fraud detection on either homogeneous or hetero-

geneous graphs. The main idea is to leverage GNNs to learn

expressive node representations with the goal of distinguishing

abnormal nodes from the normal ones in the latent embedding

space. Message-Passing GNNs (MP-GNNs) are mainstream-

ing in recent years, which aggregate neighbor node features

and achieve local smoothing by stacking layers. Although

MP-GNNs can obtain satisfactory performance on most of

cases, the strong inductive bias of homophily limits their

representative ability on heterophilic graphs. Some works [9]

point out that plentiful GNNs can be seen as low-pass filters,

so their generalization ability on high frequency graph signals

are poor. In fraud detection task, fraudsters often imitate

normal users in order to camouflage themselves, hence they

will interact with normal users more frequently. For instance,

normal users account for 81% of the fraudsters’ neighbor

nodes in YelpChi dataset (Figure 1). In other words, fraudsters’

features are inconsistent with their behaviors (interactions,

e.g., topological structure). Thus, recall that MP-GNNs do

not work well on heterophilic graphs, they fail to tackle the

inconsistency phenomenon in graph-based fraud detection and

fraudsters could fool the detection system.

Recently, a few works have noticed this problem, and they

employ aggregating weights to reduce the adverse impact

of dissimilar neighbors, or set similarity-aware thresholds to

select and re-link similar nodes. For instance, GraphConsis

[10] computes consistent score between connected node pairs

as the sampling probability. PC-GNN [5] combines label

information and latent embeddings as distance function to

measure similarity. Although such methods can alleviate the

inconsistency problem in some extent, they discard a lot of

information during filting dissimilar neighbors out, thus they

may lead to sub-optimal performance.

In this paper, we analyze the inconsistency problem in

graph-based fraud detection task, which has been obstruct-

ing a full understanding of this field. First, we clarify that

the inconsistency problem is the bottleneck of graph fraud

detection. According to [11], the underlying optimization

process of GNNs is equivalent with minimizing the topology
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and attribute constraints, and Yang et al. [12] indicates that

the degradation of performance is imputed to the compro-

mise between topology and attribute. Due to the camouflage

behaviors (topology) of fraudsters, which are inconsistent

with their essence (attribute), this conflict in fraud networks

may injure the discriminative ability of GNNs. Second, the

forefronts of different datasets are diverse, and most existing

methods are not satisfactory in fusing topological structures

and node attributes [13]. For example, fraudsters may possess

distinguishable attribute on some platforms, but their deceptive

behaviors can confuse the detection model. Therefore, we

are motivated to explore a novel method that is able to

minimize the conflict between topology and attribute and

meanwhile effectively extract most task-relevant information

from datasets.

We borrow the concept of multi-view learning problems

to graph-based fraud detection task and propose a simple

and effective model, Disentangled Information Graph Neural

Network (DIGNN). Technically, we first disentangle fraud

networks into topology and attribute views. Next, we employ

attention mechanism to fuse two view embeddings adaptively

for extracting task-relevant information. Surprisingly, we ob-

serve that this simple method surpasses all state-of-the-art

baselines. This empirically proves that the conflict between

topology and attribute causes the inconsistency problem. Be-

sides, to further decrease the entanglement between topology

and attribute and improve the performance, we design a new

optimization objective based on information theory, which

resorts to variational bounds to minimize mutual information

between two views and maximize the mutual information

between view embeddings and original inputs.

We conduct extensive experiments to compare our proposed

model with existing graph-based fraud detection models, the

results demonstrate the effectiveness of our model. In sum-

mary, the contributions of this paper can be summarized as

follows:

• We analyze the cause of the inconsistency problem, and

point out that it is mainly attributed to the conflict

between topology and attribute. In light of this, we

propose a simple yet effective model, DIGNN, which

firstly disentangles fraud network into two views and

fuses them by attention mechanism.

• We propose a novel optimization objective based on

mutual information theory and theoretically derive its

upper bound for tractable calculation.

• We verify the effectiveness of our model on real-world

fraud detection datasets. It is shown that our model is

able to significantly improve the performance in terms of

all commonly adopted metrics.

II. RELATED WORK

A. Graph-based Fraud Detection

The core idea of graph-based fraud detection task is taking

the advantages of GNNs to get the discriminative node em-

beddings, and find out the malicious ones in the latent space.

Benign Fraudster Heterophilic
Relation

Homophilic
Relation

(a) (b)

Fig. 1. (a) Illustration of graph-based fraud detection. (b) Neighbor distribu-
tion of fraudsters and benign users in YelpChi dataset.

Examples include [10], [14], [15] for review fraud detection,

[2] for fake news detection and [4], [5], [16]–[18] for financial

fraud detection. Ma et al. [19] provides a comprehensive

investigation on graph-based fraud detection.

Most of existing GNNs methods holds homophilic assump-

tion that neighbor nodes share same labels or similar features.

However, fraudsters will try to conceal themselves, so that

their features are inconsistent with their camouflage behaviors.

Some graph-based fraud detection works have noticed this

problem. GraphConsis [10] pioneers to formulate and tackle

the inconsistency problem. They introduce three kinds of

inconsistency phenomenon existing in fraud networks. CARE-

GNN [14] devises a label-aware similarity measure to find in-

formative neighboring nodes and utilizes reinforcement learn-

ing to select similar neighbors. FRAUDRE [20] aggregates

difference between adjacent node pairs. PC-GNN [5] devises

a choose operation to select beneficial neighbors based on

feature similarity.

B. Multi-view on GNNs

Topology and attribute are two essential compositions of

graphs. However existing state-of-the-art GNN models are

disable to effectively fuse topological structure and node

attributes. AM-GCN [13] uses k-nearest neighbor to con-

struct feature graph and combine it with topological structure

view and common embeddings. SCRL [21] designs a self-

supervised approach to maximize the agreement of the em-

beddings in the topology graph and the feature graph. LINKX

[22] processes node attributes and topological structure in an

orthogonal manner. In this paper, we also follow this idea and

extend it by proposing a novel architecture and optimization

objective.

Information-theoretic methods have been gaining momen-

tum in recent years, which take into consideration the mutual

dependency of different views. MIB [23] extends the informa-

tion bottleneck principle to unsupervised multi-view setting

to discard superfluous information. DVIB [24] and CMIB

[25] leverage mutual information constrains to better preserve

shared and private information of multi-view learning. To
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Fig. 2. The overview of our proposed DIGNN. The attributed fraud network is disentangled into topological structure and node attributes. DIGNN processes
these two views in parallel and fuses them by attention mechanism. In addition, DIGNN minimizes the mutual information between topology embeddings
and attribute embeddings, and maximizes the mutual information between embeddings and input data respectively.

cope with intractable computation of mutual information, these

methods adopt variational inference to optimize objective

lower and upper bounds.

III. PRELIMINARIES

Graph-based Fraud Detection. Given a fraud network

G = (V,A,X), where V = {v1, v2, . . . , vN} is the set of

nodes; A ∈ R
N×N is the adjacency matrix, if vi and vj are

connected, Aij = 1, otherwise, Aij = 0; X ∈ R
N×D denotes

node feature matrix, each node vi is associated with a D-

dimensional feature vector xi and a label yi ∈ {0, 1}, where

0 denotes the node is a normal user (negative) and 1 indicates

it is a fraudster (positive). The core idea of graph-based fraud

detection is to learn discriminative node embeddings to detect

the anomaly samples in latent space.

IV. METHOD

In this section, we will present our model, Disentangled

Information Graph Neural Network (DIGNN). Figure 2 gives

an overview of our model. It consists of three main objectives:

1. Disentangle attribute fraud network into topology and

attribute views and fuse them by attention mechanism; 2. To

further reduce the conflict between two views, we minimize

the mutual information between them; 3. In order to maintain

the semantic information from input space, we maximize the

mutual information between view-specific embeddings and

their original inputs.

A. View-specific Embedding

It is universally acknowledged that topology and attribute

are of vital importance for graph learning. However, in graph

fraud detection scenario, traditional message passing along

neighboring nodes is inappropriate as graph signal smoothing

makes fraudsters more indistinguishable. To alleviate the in-

consistency problem, we disentangle the topology and attribute

information and encode them in parallel.

Given an attributed fraud network G, it can be disentangled

into topology view A and attribute view X. Here we provide

two view encoders fA, fX for each input view, as shown

in Figure 2. Specifically, we employ Multi-Layer Percep-

tron (MLP) as encoders to obtain view-specific embeddings

ZA,ZX ∈ R
N×d:

ZA = fA(A), ZX = fX(X), (1)

in which d is the embedding dimension. With these two em-

beddings, we need to fuse them to obtain final representation

and extract task-relevant information.

B. Cross-view Fusion

Now we have two view-specific embeddings ZA and ZX ,

we then perform cross-view fusion by utilizing attention

mechanism. The attention value ωi can be represented as:

ωj
i = q · tanh(W · (zji )� + b), j ∈ {A,X} (2)

where q denotes the learnable attention vector, W is the weight

matrix and b is bias vector. Thus, we can get the attention

values ωA
i and ωX

i for view-specific embeddings zAi and zXi ,

respectively. Then we normalize them via softmax function to

get the final weight:

αj
i = softmax(ωj

i ) =
exp(ωj

i )

exp(ωA
i ) + exp(ωX

i )
, j ∈ {A,X}

(3)

Larger attention weight αi implies that the corresponding

embeddings is more important, and it is determined by specific

dataset. Then the final output embedding zi can be combined

by two view-specific embeddings with its corresponding at-

tention weight as:

zi = αA
i · zAi + αX

i · zXi . (4)

And we put it into a linear classifier, while training by a cross-

entropy loss function:

Lce =
∑

vi∈Vtrain

− log(yi · σ(W′ · zi + b′)) (5)
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in which W′ and b′ is the weight matrix and bias vector

of linear classifier, σ is a softmax function, and Vtrain is the

training node set.

C. Mutual Information Optimization

Up to now, we have discussed how to get view-specific

embeddings and fuse them with attention mechanism. How-

ever, as mentioned in [12], the representative GNN models

tend to deteriorate their expressive power due to interference

between attribute and topology. By leveraging the information

theory, we propose a novel optimization objective to allevi-

ate the aforementioned problem. Furthermore, we derive the

variational bound of our optimization objective and discuss the

intrinsic effect and intuitive insight. Without loss of generality,

we let X1,X2 to represent original views and Z1,Z2 to

represent view-specific embeddings for ease of reading.

Optimization principles The first principle aims to in-

duce model to learn mutual-exclusive embeddings, which

ameliorates the compromise problem between attribute and

topology. Considering that mutual information measures the

mutual dependence of variables, we introduce the constraint

term min I(Z1,Z2) to our optimization objective. In this way,

model is able to reduce the redundancy and enhance the ability

on exploiting sufficient semantic information in embedding

space with limited dimensionality.

Nevertheless, mutual-exclusive constraint is prone to impair

the helpful shared information. For instance, in Amazon

dataset, handcrafted features are highly correlated to social

networks (topology), thus mutual-exclusive constraint will

injure attribute semantics during training. The second principle

builds the relationship between view-specific embeddings and

their original inputs. In virtue of rich but distinct semantics

inherent in the attribute and topology, it is necessary to extract

useful features and meanwhile maintain respective information

from input data space. We further introduce the constraint term

max I(Zi,Xi) to our optimization objective to encode inputs

with more view-specific information available. To sum up, our

mutual information optimization objective can be summarized

as follow:

min I(Z1,Z2)−
2∑

i=1

I(Zi,Xi) (6)

We further make theoretical analysis to derive the lower

bound of I(Z,X) and upper bound of I(Z1,Z2) for tractable

optimization objective, which is dubbed Lrec and Lexc respec-

tively.

Lrec =

2∑
i=1

Ep(xi,zi) log q(xi|zi) (7)

Lexc =
1

2

[
Ep(z1,x2) log

px2(z2|x2)

r(z1)
+ Ep(z2,x1) log

px1
(z1|x1)

r(z2)

]

(8)

where q(xi|zi) is the variational approximation of conditional

distribution p(x|z), and px1 and px2 represent encoders that

encode information from original feature space. The bound

will become tighter as the marginal distribution r(z) ap-

proaches the priors p(z). Eventually, the overall optimization

objective is formulated as follow

L = Lce + α · Lrec + β · Lexc (9)

where α and β are scalar factors. Moreover, it is worth

noting that the second term reconstruction loss is equivalent to

graph signal denoising but without signal smoothness, which

is reasonable considering the inconsistency problem of graph

anomaly detection. Intuitively, our loss function denoises the

original graph signal and achieves mutual exclusion between

attribute and topology together with supervised information.

V. EXPERIMENTS

A. Experiment Setup
1) Datasets: Our proposed DIGNN model is evaluated on

two real-world opinion fraud network datasets: YelpChi [26]

and Amazon [27].
2) Baselines: We compare with several representative state-

of-the-art models to verify the effectiveness of DIGNN in

graph-based fraud detection. GCN [6], GAT [8], GraphSAGE

[7], DR-GCN [28], CARE-GNN [14], FRAUDRE [20], PC-

GNN [5]. And we also add two variants of DIGNN for ablation

study.
3) Settings: The parameters of DIGNN are optimized with

Adam optimizer, the train, valid, and test ratio are set to

be 40%, 20%, and 40% respectively. We use Scikit-learn to

implement train-test split, and the imbalance ratio is consistent

in three sets. It is worth noting that to alleviate the influence

of class imbalance, we employ down-sampling or re-weighting

to train DIGNN.
For GCN, GAT, and GraphSage, they suffer from the class

imbalance and inconsistency problem, and will always predict

normal (negative) samples. Therefor, we follow PC-GNN to

utilize threshold-moving strategy, and the classification thresh-

old is set to be 0.2 for YelpChi and Amazon. For CARE-GNN,

FRAUDRE, PC-GNN, we use the parameters introduced by

authors.
4) Metrics: The fraud detection datasets display a skewed

class distribution, so accuracy is not suitable to evaluate the

effectiveness of fraud detection models. The evaluation metrics

should have no bias to any class. Therefore, we use three

common metrics, namely F1-macro, AUC and GMean.

B. Analysis of Attention Mechanism (RQ1)
We analyze the attention values and visualize them for

investigating whether the attention values learned by our model

is meaningful. The attention changing trends are shown in

Figure 3. The x-axis is the number of training epochs and y-

axis is the average attention value. With the training epoch

increasing, the difference between the corresponding attention

values of topology and attribute begin to be striking. We can

observe that DIGNN pays more attention on attribute and

topology on YelpChi and Amazon datasets respectively. It

demonstrates our model has a strong capability to extract the

task-relevant information from these two views.
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Fig. 3. The attention changing trends w.r.t epochs.

TABLE I
PERFORMANCE COMPARISON ON YELPCHI AND AMAZON.

Method
Dataset Yelpchi Amazon

Metric F1-macro AUC GMean F1-macro AUC GMean

Baselines

GCN 0.4929 0.6274 0.1886 0.5461 0.8328 0.2570

GAT 0.4879 0.5715 0.1659 0.6464 0.8102 0.6675

GraphSAGE 0.4405 0.5439 0.2589 0.6416 0.7589 0.5949

DR-GCN 0.5523 0.5921 0.4038 0.6488 0.8295 0.5357

CARE-GNN 0.6075 0.7713 0.7023 0.8875 0.9398 0.8848

FRAUDRE 0.5841 0.7427 0.6654 0.8806 0.9272 0.8808

PC-GNN 0.6130 0.7715 0.7068 0.8557 0.9482 0.8952

Ablation
DIGNN\S 0.5120 0.6120 0.5895 0.7308 0.8913 0.8088

DIGNN\M 0.6994 0.8389 0.7348 0.9186 0.9645 0.9195

Ours DIGNN 0.7092 0.8526 0.7596 0.9189 0.9729 0.9281

C. Performance Comparison (RQ2)

We compare the performance of DIGNN with state-of-the-

art methods. The corresponding F1-macro, AUC and GMean

scores are shown in Table I, we have the following two

observations.

First, DIGNN significantly boosts the performance for all

metrics on YelpChi and Amazon datasets than other SOTA

baseline methods. We can observe that PC-GNN outperforms

other baselines in most metrics, but our model can still

surpass it by a significant margin. In Amazon dataset, graph-

based fraud detection methods have already achieved high

performance and the increasing room is limited. But our model

can still get appreciable improvements.

Second, the compared baseline methods can be divided

into two groups, traditional MP-GNNs and graph-based fraud

detection methods. GCN, GAT, GraphSAGE are tradition

GNN models, and DR-GCN is designed for imbalanced node

classes. They do not consider the inconsistency problem so

that we can observe these models get poor performance on

YelpChi and Amazon datasets. CARE-GNN and PC-GNN

are graph-based fraud detection methods, they both sample

neighbors according to similarity measure, which can alleviate

inconsistency problem to a certain degree. Therefore, they can

perform better on these two datasets.

In general, DIGNN outperforms all baselines in F1-macro,

AUC and GMean on YelpChi and Amazon datasets, which can

demonstrate the effectiveness of our model.

D. Ablation Study (RQ3)

We compare DIGNN with two corresponding variants

DIGNN\S and DIGNN\M to figure out how do different

10 20 30 40 50
Training Ratio (%)

0.550

0.575

0.600

0.625

0.650

0.675

0.700
F1-macro

10 20 30 40 50
Training Ratio (%)

0.76

0.78

0.80

0.82

0.84

AUC

PC-GNN CARE-GNN DIGNN

Fig. 4. Sensitivity analysis with respect to different training ratio on YelpChi
dataset. The solid line represents the average score of 3 runs and the shadow
indicates the standard deviation.

components of DIGNN contribute to performance improve-

ment. The results of two datasets are shown in Table I. We

can observe that DIGNN surpasses its variants in most of

metrics. For DIGNN\M , its overall performance on Yelpchi

and Amazon is inferior to complete model, which verifies the

effectiveness of our proposed mutual information objective.

For DIGNN\S , we can observe that DIGNN is evidently better

than model without sampling strategy. We suppose it is caused

by the noise information of the structure view. Sampling

strategy plays a denoising effect on structural information to

some extent.

E. Sensitive Analysis (RQ4)

We further evaluate the performance of DIGNN with respect

to the training ratio and hyperparameters α, β. For training

ratio, we vary the percentage of training nodes from 10% to

50%, and compare DIGNN with other two baselines, CARE-

GNN and PC-GNN. Figure 4 shows the performance of F1-

macro and AUC on YelpChi dataset. We can observe that

DIGNN always achieves best performance among the three

models. When the training ratio is 10%, DIGNN still performs

better than PC-GNN training on 50% samples. And DIGNN

surpasses CARE-GNN and PC-GNN by a large margin in

AUC. The result on GMean also presents similar tendency,

but in order to save space, we won’t show it.

For hyperparameters α and β, we vary these two hyper-

parameters from 0 to 1, and the corresponding results are

shown in Figure 5. Considering the limit space, we only

present AUC performance on YelpChi and Amazon datasets.

It can be observed that the optimal selection of these two

hyper-parameters varies greatly on the different datasets. In

the YelpChi dataset, higher AUC performance can be achieved

by selecting larger β (β ≥ 0.8). And in the Amazon dataset,

larger α (α ≥ 0.6) and smaller β (β ≤ 0.4) can get a better

result.

VI. CONCLUSION

In this paper, we suggest that disentangling operation is

beneficial to alleviate the inconsistency problem in fraud

network. In order to decrease the conflict between topological
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Fig. 5. AUC as the two hyper-parameters α and β varying from 0 to 1.

structure and node attribute, we propose a simple yet effective

model named DIGNN. It firstly disentangles the attribute fraud

network into topology and attribute two views. Then DIGNN

fuses two kinds of view information adaptively by attention

mechanism, which can effectively extract task-relevant infor-

mation. Moreover, we design a novel optimization objective

to further reduce the entanglement between these two view-

specific embeddings and maintain their semantic informa-

tion. Experiment results demonstrate that DIGNN outperforms

state-of-the-art methods on two real-world graph fraud detec-

tion datasets.
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