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1 MV-RNN: A Multi-View Recurrent Neural
2 Network for Sequential Recommendation
3 Qiang Cui , Shu Wu ,Member, IEEE, Qiang Liu , Wen Zhong, and Liang Wang, Fellow, IEEE

4 Abstract—Sequential recommendation is a fundamental task for network applications, and it usually suffers from the item cold start

5 problem due to the insufficiency of user feedbacks. There are currently three kinds of popular approaches which are respectively based

6 on matrix factorization (MF) of collaborative filtering, Markov chain (MC), and recurrent neural network (RNN). Although widely used,

7 they have some limitations. MF based methods could not capture dynamic user’s interest. The strong Markov assumption greatly limits

8 the performance of MC based methods. RNN based methods are still in the early stage of incorporating additional information. Based

9 on these basic models, many methods with additional information only validate incorporating one modality in a separate way. In this

10 work, to make the sequential recommendation and deal with the item cold start problem, we propose aMulti-View Rrecurrent Neural

11 Network (MV-RNN) model. Given the latent feature, MV-RNN can alleviate the item cold start problem by incorporating visual and

12 textual information. First, At the input of MV-RNN, three different combinations of multi-view features are studied, like concatenation,

13 fusion by addition and fusion by reconstructing the original multi-modal data. MV-RNN applies the recurrent structure to dynamically

14 capture the user’s interest. Second, we design a separate structure and a united structure on the hidden state of MV-RNN to explore a

15 more effective way to handle multi-view features. Experiments on two real-world datasets show that MV-RNN can effectively generate

16 the personalized ranking list, tackle the missing modalities problem, and significantly alleviate the item cold start problem.

17 Index Terms—Multi-view, sequential recommendation, recurrent neural network, cold start

Ç

18 1 INTRODUCTION

19 RECENTLY, with the development of Internet, applica-
20 tions with sequential information have become numer-
21 ous and multilateral, such as web page recommendation
22 and click prediction. Based on sequential recommendation
23 methods, these applications could predict a user’s following
24 behaviors to improve user experience. Taking online shop-
25 ping as an example, after a user buys an item, the application
26 would predict a list of items that the user might buy in the
27 near future. Further, we can consider the purchase behaviors
28 as a sequence in the time order. Due to sparse user feedbacks,
29 sequential recommendation usually encounters the item
30 cold start problem. Thus, our task here concentrates on the
31 sequential recommendation based on user historical implicit
32 feedback and alleviating the item cold start problem. As
33 shown in Fig. 1, we observe that a user will look at corre-
34 sponding images and text descriptions before he or she
35 buys items. Intuitively, we can alleviate the item cold start
36 problem by modeling additional multi-modal information

37like images and text descriptions. Besides, we try to find a
38more effective way of incorporating additional information
39into sequencemodeling.
40As for the recommendation, collaborative filtering meth-
41ods are widely used. Matrix Factorization (MF) methods [1],
42[2], [3] become the first choice, and learn latent representa-
43tions of users and items. In order to alleviate the cold start
44problem, multiple additional information can be adopted,
45such as attribute information [22], text [4], images [5], [6],
46and so on. Although these methods can utilize different
47types of features, they usually capture the user’s static inter-
48est and have much difficulty in capturing sequential infor-
49mation. Long-term interest should be weakened while
50short-term interest should become prominent relatively [7].
51On the other hand, Markov Chain (MC) methods [7], [8]
52are widely studied for sequential recommendation by learn-
53ing the transition matrix. They predict the next behavior
54based on recent behaviors as the transition matrix gives the
55probability among different states. However, MC methods
56could not well build the user’s long-term interest due to the
57Markov assumption. They usually consider recent behav-
58iors and ignore the long-term interest. Besides, after con-
59structing the real world dataset of sequential scenarios like
60shopping and clicking, the transition probability among dif-
61ferent states is established. The additional information no
62longer has any effect on this probability.
63Recently, Recurrent Neural Network (RNN) methods
64have shown great achievements in machine translation [9],
65sequential click prediction [10], location prediction [11], next
66basket recommendation [12], multi-behavioral sequential pre-
67diction [13], and so on. Besides, long short-term memory [14]
68and gated recurrent unit [15] are developed because of the
69gradient vanishing and explosion problem. They can hold the
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70 long-term dependency and have been applied to many tasks
71 [16], [17], [18]. These RNN methods [11], [12], [13] are more
72 promising than factorizing personalized markov chains [8]
73 and other conventionalMCmethods.
74 The existing sequential recommendation methods have
75 difficulty in alleviating the problem of item cold start. A
76 good choice is to apply RNN and incorporate additional
77 multi-modal features, like images and text descriptions.
78 Recently, the parallel RNNs model (p-RNNs) [19] incorpo-
79 rates additional information for session-based recommen-
80 dation. The p-RNNs model deals with multi-source data by
81 separate subnets which are trained one by one. It builds
82 multiple user’s interests based on different views and com-
83 bines the results at the end of each subset together. This
84 way may not well leverage the advantage of multi-view
85 data. We need to consider how to more effectively incorpo-
86 rate additional information to model sequential behaviors.
87 In view of the above analysis, we propose a model called
88 Multi-View Recurrent Neural Network (MV-RNN) for
89 sequential recommendation and alleviating the item cold start
90 problem. First, we gain visual and textual features from
91 images and text descriptions respectively. These multi-modal
92 features are complementary to understand the item and
93 user’s interest. A latent vector is defined for each item to rep-
94 resent the indirectly observable representation. These multi-
95 view features are used as the input ofMV-RNN, and three dif-
96 ferent combinations are explored. Feature concatenation and
97 fusion naturally come to mind. More importantly, we intro-
98 duce a multi-modal fusion model, called multi-modal Mar-
99 ginalized Denoising AutoEncoder (3mDAE). This model can

100 help to learn more robust features and handle items with
101 missing modalities. Next, we design a separate structure and
102 a united structure for MV-RNN to explore an effective way to
103 handle multi-view features. One applies multiple RNN units
104 separately at every input time, and multiple hidden states of
105 these units are concatenated together at the same time. The
106 other employs a single RNN unit to deal with the multi-view
107 features at once to learn a united hidden state. The MV-RNN
108 model adopts the recurrent structure to capture dynamic
109 changes in user’s interest. Finally, we employ the Bayesian
110 personalized ranking framework [2] and the backpropagation
111 through time algorithm [20] to learn parameters. The main
112 contributions are listed as follows:

113� We design a representation of item with multi-
114view features. These features comprise of indirectly
115observable (latent) feature and directly observable
116(e.g., visual and textual) feature. Three combinations
117of multi-view features are developed, especially our
1183mDAE.
119� To explore a more effective way to handle multi-
120view inputs, MV-RNN applies a separate structure
121and a united structure. Compared to dealing with
122each view separately, handling multi-view features
123by a united structure can better leverage the advan-
124tage of different views.
125� Experiments on two large real-world datasets reveal
126that MV-RNN is effective and outperforms the state-
127of-the-art methods.
128The rest of the paper is organized as follows. Section 2
129reviews previous work on sequential recommendation, cold
130start, and multi-modal representation learning. MV-RNN is
131detailly introduced in Section 3 from the perspective of input,
132hidden state, and output. In Section 4, we conduct extensive
133experiments. At last, we conclude the paper in Section 5.

1342 RELATED WORK

135In this section, we review several related works includ-
136ing collaborative filtering, Markov chain based methods,
137recurrent neural networks, and multi-modal representation
138learning.

1392.1 Collaborative Filtering
140There are two main methods of Collaborative Filtering (CF):
141neighborhood models and latent factor models [21]. Neigh-
142borhood models have practical benefits, but they usually
143focus on a small subset of items or users. Latent factor models
144have the global perspective, and thus they tend to be more
145accurate. Recently, Matrix Factorization models belonging to
146latent factor models become fundamental because of its scal-
147ability and accuracy. MF absorbs rich additional information
148to alleviate the cold start problem, like item’s attribute [22].
149Text such as reviews is used along with the development of
150online searching [23]. Zhao et al. extend MF by combining
151visual data like posters and still frames of a movie to under-
152stand the movie and user’s interest [6]. Besides MF, we can

Fig. 1. Diagram of a user’s purchase sequence. A user buys different items at different times. We make use of the image and text description
associated with each item to build the sequential recommendation model. The goal is to recommend items a user would buy in the near future, and
alleviate item cold start by incorporating multiple additional information into sequence modeling.
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153 also apply other methods to incorporate contextual informa-
154 tion [51], [52]. However, none of these methods could reflect
155 the changes in user’s interest over time.
156 In recent years, pairwise methods become the state-of-the-
157 art for implicit feedback [5]. These methods can directly opti-
158 mize the ranking of feedbacks and assume positive items are
159 preferable than negative items. Rendle et al. [2] propose a
160 Bayesian Personalized Ranking (BPR) framework to maxi-
161 mize the difference of user’s preferences between positive
162 and negative items. Recently, BPR is extended to combine
163 more information like users’ social relations [24]. Other infor-
164 mation like visual signals is accommodated by VBPR [5],
165 which applies visual features of product images to discover
166 user’s visual interest and better understand items. Similar to
167 MFmethods, they only learn general tastes of users.

168 2.2 Markov Chain Based Methods
169 In addition to conventional CF methods, sequential meth-
170 ods are popular for the recommendation and they mostly
171 rely on Markov Chains. Rendle et al. [8] make a combination
172 of MF and MC to learn both general taste and current effect
173 for the next-basket recommendation. Chen et al. [7] build a
174 Markov model integrated with the forgetting mechanism to
175 weaken long-term interest and highlight short-term interest
176 for item recommendation. However, the Markov assump-
177 tion hinders learning the long-term dependency because it
178 assumes the next state only related to the last state. The
179 high/variable-order MC models can make the next state
180 related to multiple previous states, which results in a high
181 computational cost. This problem can be solved by only
182 considering the state-to-state probability with balancing
183 parameters, which ignores the set-to-state probability [7],
184 [25]. It is difficult for MC methods to model the long-term
185 dependency.
186 On the other hand, there are few Markov models involv-
187 ing multiple features. Chen et al. [26], [27] propose a two-
188 view latent subspace Markov network to do image retrieval,
189 annotation and so on. Their model is more like multi-view
190 data fusion and is not suitable for sequential recommenda-
191 tion. MC is based on the probability among different states.
192 In the sequential scenario, this probability is independent of
193 the additional content information.

194 2.3 Recurrent Neural Networks
195 Recently, recurrent neural networks become more and more
196 powerful. Owing to its recurrent structure, RNN can better
197 extract the temporal dependencies. RNN based sequential
198 click prediction [10] gains the state-of-the-art performance.
199 Yu et al. [12] take the representation of a basket acquired by
200 pooling operation as the input of RNN, which is most
201 effective for next basket recommendation. Liu et al. [11]
202 incorporate time-specific and distance-specific transition
203 matrices into RNN to predict next location. Liu et al. [13]
204 combine RNN and the Log-BiLinear model [28] to make
205 multi-behavioral prediction. Compared with traditional
206 sequential methods, RNN is more promising.
207 Due to the gradient vanishing and explosion problem
208 [29], standard RNN fails to hold the long-term dependency.
209 Lots of work have been done to alleviate this problem, and
210 the gated activation function achieves a success, like long
211 short-term memory (LSTM) [14] and gated recurrent unit
212 (GRU) [15]. Sutskever et al. [16] apply a multilayered LSTM
213 to encode the input sequence and another LSTM to decode
214 the target sequence in translation task. Their work also

215demonstrates LSTM can easily handle long sentences. Chung
216et al. [17] propose gated feedback RNNs to investigate the
217character-level language modeling. Bengio’s work finds that
218GRU/LSTM are both certainly better than the basic RNN
219andGRU is comparable to LSTM on sequencemodeling [30].
220Recently, RNN is developed to model multi-view fea-
221tures. Hidasi et al. introduce the basic RNN model to do the
222session-based recommendation task [18], then develop
223the p-RNNs model to incorporate rich features [19]. The
224p-RNNs model builds subnets for each view separately.
225This is similar to the latent interest and visual interest in
226VBPR [5]. Two RNNs are used to make video recommenda-
227tion by using the image and make product recommendation
228by using text description. Compared with the basic RNN
229model with only ID feature, the performance improvement
230of p-RNNs is not significant. Cao et al. model multi-view
231features collected by the mobile phone to predict the mood
232score [31]. Obviously, there are large differences between
233features in their work, and they apply the late fusion to
234explore interactions.

2352.4 Multi-Modal Representation Learning
236There are several main multi-modal representation learn-
237ing methods: probabilistic graphical models, kernel-based
238methods and neural networks [32]. It is often intractable
239and complicated to obtain exact inference for probabi-
240listic models. Because of the eigenvalue problem, kernel-
241based methods occupy a lot of memory and time. On the
242contrary, neural networks are tractable to handle the high-
243dimensional data. Recently, due to the success of Deep
244Neural Networks (DNNs), traditional methods tend to com-
245bine deep structures.
246For methods based on DNNs, two main training strate-
247gies are widely used: Canonical Correlation Analysis (CCA)
248and AutoEncoder (AE) [33]. CCA based methods can make
249the two modalities maximally correlated. Recently, Deep
250CCA is proposed but it needs a large minibatch to optimize
251[34]. Based on CCA and AE, a deep canonically correlated
252autoencoder model is proposed [33] for feature learning.
253The constraint conditions would be too complicated if CCA
254based methods are used in our work. Accordingly, AE
255based methods would be promising.
256AE based methods are very powerful to learn compact
257representations. AE could reproduce the input signal as far as
258possible and find the principal component. Vincent et al.
259design the denoising AE (dAE) by setting some input data to
260zero in a probabilistic manner [35]. After that, Vincent et al.
261design the stacked denoising AE (sDAE) and find that a
262single matrix is enough to do the encoding and decoding
263steps [36]. Ngiam et al. introduce the bimodal deep denois-
264ing autoencoder [37]. In this way, the hidden layer could
265learn the shared representation from different modalities.
266Later, Chen et al. [38] propose the marginalized denoising AE
267(mDAE)model,which finishes off the nonlinear transfer func-
268tion and learns a linear transfer matrix. Furthermore, Wang
269et al. [39] propose a coupled mDAEmodel to deal with cross-
270domain learning problems. We introduce a 3mDAE model to
271generatemulti-modal fusion representation.

2723 PROPOSED MV-RNN MODEL

273In this section, we propose a Multi-View Recurrent
274Neural Network (MV-RNN) model. We first formulate the
275problem. Next, we explore 3 strategies to combine multi-

CUI ET AL.: MV-RNN: A MULTI-VIEW RECURRENT NEURAL NETWORK FOR SEQUENTIAL RECOMMENDATION 3
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of276 view features at the input to represent the item. Then we

277 investigate 2 structures to model multi-view features at the
278 hidden state to build user representation. Finally, all the
279 variants of MV-RNN can be trained with the Bayesian Per-
280 sonalized Ranking framework and the Back Propagation
281 Through Time (BPTT) algorithm.

282 3.1 Problem Formulation
283 In order to simplify the problem formulation of sequential
284 recommendation, we take purchase histories of online shop-
285 ping for instance. Let U ¼ fu1; . . . ; ujUjg and I ¼ fi1; . . . ijI jg
286 represent the sets of users and items respectively. Use
287 Iu ¼ ðiu1 ; . . . ; iujIujÞ to denote the items that the user u has
288 purchased in chronological order, and the tth item iut 2 I .
289 Additionally, an image and a text description are available
290 for each item i 2 I . Given each user’s history Iu, our goal is
291 to recommend a list of items that a user may purchase. The
292 notation is listed in Table 1 for clarity.

293 3.2 Representation of Item with Multi-View Features
294 Representation of item is used as the input of our MV-RNN
295 model. Three different combinations of multi-view features
296 are shown in Fig. 2, and details are as follows.

297 3.2.1 Multi-View Features

298 There are two basic types of multi-view features of an item:
299 indirectly observable view and directly observable view.
300 The former view is latent feature, which is widely-used in
301 recommender systems. The latent feature of an item is
302 defined by a vector

iix ¼ xx; iix 2 Rd: (1)

304304

305The latter view refers to the additional multi-modal infor-
306mation that is presented externally, like image, text descrip-
307tion, category label, video, and so on. They can provide
308very important information for the item. For example,
309image can directly show the color, text description can pro-
310vide the clothing size.
311The multi-modal features consist of visual and textual fea-
312tures (f and g) in our work. They are obtained by GoogLeNet
313[40] andGloVe [41]weighted by TF-IDF respectively. The two
314kinds of features are 1024-dimensional and 100-dimensional
315vectors respectively. Due to the difference of f and g, we learn
316two linear embeddingmatricesEE and VV to transform the orig-
317inal high-dimensional features to embedded low-dimensional
318visual and textual features (iif and iig)

iif ¼ EEf; iif 2 Rd (2)
320320

321

iig ¼ VV g; iig 2 Rd: (3)
323323

324Sequential recommendation usually encounters the cold start
325problem as feedbacks are too sparse to learn fine representa-
326tions of users and items. Modeling multi-view features is an
327effectiveway to alleviate this issue. These features are usually
328obtained from different data sources, and have different
329numerical ranges as well as different dimensions. Therefore,
330the raw features need be normalized to a same range to obtain
331xx, f and g, and should better be embedded to d-dimensional
332vectors to obtain iix, iif and iig. None of them is sequence data
333and they are alignedwith each other by the item ID.

3343.2.2 Feature Concatenation

335The most natural method to combine multi-view features is
336concatenation. Intuitively, the item representation is ii ¼ iix;½
337iif ; iig�. The ii is a 3d-dimensional vector, and its dimension
338will increase with the number of features. The capacity and
339complexity of this method will also increase subsequently.

3403.2.3 Feature Fusion

341Fusion can be directly established by the addition operation
342without nonlinear transformation

iim ¼ iif þ iig; iim 2 Rd: (4)
344344

TABLE 1
Notation

Notation Explanation

U , I , Iu set of users, set of items, sequence of user u

Pu, Vu, T u sequences of training, validation and test of user u

p, q positive item, negative item

x̂t
upq difference of preference of u towards p and q at the tth time

f, g high-dimensional visual and textual features of an item

EE, VV embedding matrices for f, g

iif , iig low-dimensional visual and textual features of an item

iix, iim latent feature, multi-modal fusion feature built by iif and iig
d, df , dg dimensions of iix; f, g

hhx, hhm latent and multi-modal fusion features of a user

UU ,WW , bb transition matrices and bias for recurrent neural network

Fig. 2. Diagram of the MV-RNN model. The multi-view input consists of latent feature and additional visual and textual features. Concatenation,
Fusion, and 3mDAE are three kinds of combinations of multi-view features. The hidden state captures dynamic changes in the user’s interest.
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346 fusion. Therefore, iif and iig are fused as the multi-modal
347 fusion feature iim, and this process can make the model more
348 concise. Benefiting from linear embedding and linear trans-
349 formation, iim can hold all the information from f and g. Then
350 we obtain item representation ii ¼ iix; iim½ � by concatenation.
351 Although concatenation and fusion are easy to utilize, they
352 still have three issues. First, both concatenation and fusion do
353 not have an explicit objective which is able to explore correla-
354 tions across modalities [37]. Second, they are unhandy to use
355 in such a situation where items in the test set have missing
356 modalities [37]. Third, no matter the combination of iif ; iig is
357 concatenation or fusion, useful information is entered into
358 the model as well as noise. Therefore, more robust structures
359 and parameters (EE; VV ) need to be learned.

360 3.2.4 Multi-Modal Marginalized Denoising AutoEncoder

361 We introduce a new fusion method to combine the multi-
362 modal information to learn fusion feature. This method can
363 go further to leverage the advantage of different modalities,
364 learn more robust features and tackle the missing modalities
365 problem.
366 This method is based on the mDAEmodel [38]. It learns a
367 linear mapping MM and minimizes the reconstruction loss
368 lðtt;MM~ttÞ, where ~tt is the corrupted version of original feature
369 tt. However, mDAE has no hidden layer. Later, the coupled
370 mDAE [39] modifies the original mDAE with two mappings
371 in a linear way lðtt;MMTMM~ttÞ. MM~tt and MMTMM~tt represent the
372 encoding and decoding processes respectively. Based on
373 these works, we introduce a multi-modal mDAE model,
374 called 3mDAE, to learn fusion feature. Details are as follows.
375 Encoder-Decoder. The encoding process is represented by
376 Eqs. (2) and (3), and the corresponding hidden layer is built
377 by Eq. (4). In the decoding process, we need to reconstruct
378 the multi-modal input features. The mapping matrix in
379 decoding process is just the transpose of the mapping
380 matrix in encoding process [36]

f̂f ¼ EETiim
ĝg ¼ VV Tiim:

(5)

382382

383 In our introduced 3mDAE model, we omit bias term and
384 apply original features f and g instead of corrupted version
385 as input. The denoising operation is discussed in Section 4.3.
386 The final representation of an item is also ii ¼ iix; iim½ �.
387 Objective Function. The mDAE model minimizes the over-
388 all quadratic reconstruction loss for one modality [39]

Q� ¼ argmin
Q

1

2m

Xm
i¼1

tti �MMTMM~tti
�� ��2; (6)

390390

391where m is the number of samples. We extend this to form
392the objective function of 3mDAE

Q� ¼ argmin
Q

1

2m

Xm
i¼1

kfi � f̂fik2

jdf j
þ

gi � ĝgi
�� ��2

jdgj

 !
: (7)

394394

395The df and dg are the original dimensions of visual and tex-
396tual features respectively, where jdf j ¼ 1024 and jdgj ¼ 100
397in our work. They are used as balance factors.

3983.3 Modeling of Multi-View Features on Hidden
399State
400User representation is expressed by the hidden state of our
401MV-RNN model. Two different ways are explored to model
402the multi-view features built at the input. In detail, Figs. 3a
403and 3b reveal the separate and united hidden state structures
404respectively. Specifically, the illustration is based on iix and iim.

4053.3.1 Long Short-Term Memory

406Conventional RNN suffers from the gradient vanishing and
407explosion problem, so that it fails to learn long-term depen-
408dencies [29]. Gated activation function is proposed to solve
409this issue. We chose the widely-used LSTM [14] and it is
410denoted by

fft ¼ s UU1xx
t þWW 1hh

t�1 þ bb1
� �

;

zzt ¼ s UU2xx
t þWW 2hh

t�1 þ bb2
� �

;

ggt ¼ tanh UU3xx
t þWW 3hh

t�1 þ bb3
� �

;

cct ¼ fft � cct�1 þ zzt � ggt

oot ¼ s UU4xx
t þWW 4hh

t�1 þ bb4
� �

;

hht ¼ oot � tanh cct
� �

(8)

412412

413where�means element-wise product between two variables,
414t is the time step, xxt 2 Rd is the input feature. Transitionmatri-
415ces UU1�4 2 Rd�d transfer the current input. Recurrent connec-
416tions WW 1�4 2 Rd�d delivers the sequential information.
417bb1�4 2 Rd are bias terms. The fft; zzt; ggt; cct; oot; hht are the forget
418gate, input gate, update gate, cell, output gate and the hidden
419state, respectively. In our work, we apply a Lstmð	Þ function
420to substitute the original formulas in Eq. (8)

hht ¼ Lstm UUxxt;WWhht�1; bb
� �

; hht 2 Rd; (9)
422422

423where UU is a set of four matrices UU1�4, and so do theWW; bb.

4243.3.2 Separate Multi-View RNN

425A natural way to handle multi-view features is to apply sep-
426arate RNN units. Each unit is used for each kind of feature.

Fig. 3. Diagram of hidden state structures of the MV-RNN model. We devise a separate structure and a united structure. The two structures handle
the multi-view input features at the input by multiple RNN units and by one RNN unit each time, respectively.

CUI ET AL.: MV-RNN: A MULTI-VIEW RECURRENT NEURAL NETWORK FOR SEQUENTIAL RECOMMENDATION 5
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427 In this stage, our MV-RNN is a two-unit model, as shown
428 in Fig. 3a.
429 We apply one RNN unit to model the latent feature and
430 apply another RNN unit to model the multi-modal fusion
431 feature. Formulation is defined by

hht
x ¼ Lstm UUxii

t
x;WW xhh

t�1
x ; bbx

� �
; hht

x 2 Rd; (10a)

433433

434

hht
m ¼ Lstm UUmii

t
m;WWmhh

t�1
m ; bbm

� �
; hht

m 2 Rd; (10b)436436

437

438 where hht
x and hht

m are defined as a user’s latent interest and
439 multi-modal fusion interest at the tth input. UUx is a set of
440 four matrices: UUx1�4 2 Rd�d. Similarly, WW x; bbx; UUm;WWm and
441 bbm are sets of three matrices or vectors, where subscripts x
442 and m represent the latent modeling and multi-modal
443 modeling.
444 Multi-view user representation is the concatenation of
445 hidden states from the two RNN units. They are linked
446 together at every time step in our work

hht ¼ hht
x;hh

t
m

� �
; hht 2 R2d; (11)

448448

449 where hht is the user’s general interest. But it may not be able
450 to leverage the connection between multi-view features, as
451 we model them in two RNN units separately and build dis-
452 crete user’s interests. Thus we tend to develop a single
453 RNN unit to handle multi-view features simultaneously.

454 3.3.3 United Multi-View RNN

455 We incorporate the multi-modal fusion feature into one
456 RNN unit together with the latent feature. In such situation,
457 our MV-RNN is a one-unit model, as shown in Fig. 3b. This
458 structure can capture the relation between multi-view fea-
459 tures and construct the united user’s interest, which pro-
460 motes the model to have more promising performance

hht ¼ Lstm UU iitx; ii
t
m

� �
;WWhht�1; bb

� �
; hht 2 R2d; (12)

462462

463 where hht is the complete user’s interest, not a simple combi-
464 nation of a user’s different interests in Eq. (11). We apply
465 one factor UU consisting of UU1�4 2 R2d�2d because we have
466 iitx; ii

t
m

� �
2 R2d, and so do theWW; bb.

467 Via the 3mDAE model and the united structure, we
468 finally model the item’s multiple (latent, visual and textual)
469 features and the user’s interest in the same feature space.
470 Our MV-RNNmodel benefits from this united viewpoint.

471 3.4 Model Learning
472 After discussing the input and hidden state of the MV-RNN
473 model, we introduce the training procedure on output. No
474 matter what kind of combinations of features at input or
475 structures of hidden state, the BPR [2] framework is always
476 suitable. BPR is a powerful pairwise method for implicit
477 feedback, and it has been widely used in many works [5],
478 [11], [12], [13], [18], [42]. Besides, as a 3mDAE model is
479 introduced, we need to carefully consider the multi-modal
480 reconstruction loss. A united objective function needs to be
481 constructed. The description is also based on iix and iim.
482 The training set S is made by ðu; p; qÞ triples, where u rep-
483 resents the user, p and q denote the positive and negative
484 items respectively. Item p is selected from a user’s purchase
485 history Iu, while item q is randomly chosen from the rest
486 items (I n Iu). A negative item is regenerated for each posi-
487 tive item in each epoch

S ¼ ðu; p; qÞju 2 U ^ p 2 Iu ^ q 2 I n Iuf g: (13) 489489

490

491Given the training set, we calculate the difference of user’s
492preferences between positive and negative items on output
493at every time step. At the tth time step, it can be computed by

x̂t
upq ¼ x̂t

up � x̂t
uq

¼ hht
� �T

iitþ1
p � iitþ1

q

� �
;

(14)

495495

496where iitþ1
p and iitþ1

q represent positive and negative inputs

497respectively: iitþ1
p ¼ iitþ1

xp ; iitþ1
mp

h i
; iitþ1

q ¼ iitþ1
xq ; iitþ1

mq

h i
.

498The objective function combines BPR and our 3mDAE by a
499minimal form. TheMV-RNN can simultaneouslymodel these
500two kinds of losses. BPRmaximizes the following formula:

Q� ¼ argmax
Q

X
ðu;p;qÞ2S

ln s x̂upq

� �
� �Q

2
kQk2: (15)

502502

503It is transformed to the minimal form in our work. Next,
5043mDAE loss represented in Eq. (7) is extended along with
505the BPR. Because we compute preference at every output
506using positive and negative items, we need to minimize all
507the visual and textual encoder-decoder losses. Last, we
508introduce a multiplicator ra to leverage the preference of
509BPR and the reconstruction loss of our 3mDAE model. The
510final objective function is defined as

Q� ¼ argmin
Q

X
ðu;p;qÞ2S

� ln sðx̂upqÞ
þ ra

2jdf j
kfp � f̂fpk2 þ kfq � f̂fqk2
� �

þ ra
2jdgj gp � ĝgp

��� ���2þ gq � ĝgq

��� ���2
	 


0
BBB@

1
CCCAþ �Q

2
kQk2;

(16) 512512

513where Q denotes a set of parameters Q ¼ fXX;EE; VV ; UU;WW; bbg.
514XX is the set of all items’ latent features.UU ,WW and bb are the sets
515of the matrices or vectors represented in previous equations.
516�Q 5 0 is the regularization parameter. Please note that �ev is
517introduced to regularize embedding matrices EE and VV . Then,
518MV-RNN can be learned by the mini-batch gradient descent
519and parameters are updated by classical BPTT [20].
520After the training, we obtain the fixed representations ofQ.
521ThenXX;EE and VV are reused to obtain each item’s final repre-
522sentation.We recalculate each user’s sequential hidden states,
523and the last hidden state denotes a user’s final representation.

5244 EXPERIMENTAL RESULTS AND ANALYSIS

525In this section, we conduct experiments on two real-world
526datasets. First, experimental settings are introduced. Then a
527hyperparameter optimization is performed. Next, we make
528a comparison between MV-RNN and baselines, and a
529denoising experiment is conducted for our 3mDAE. The last
530section is cold start analysis on items.

5314.1 Experimental Settings

5324.1.1 Datasets

533Experiments are conducted on two datasets collected from
534Taobao1 and Amazon.2 The basic statistics are listed in

1. https://tianchi.shuju.aliyun.com/datalab/dataSet.htm?id=13
2. http://jmcauley.ucsd.edu/data/amazon
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535 Table 2. Both datasets have massive sequential implicit
536 feedbacks, and each item contains an image and a text
537 description. We apply the filtering strategy called k-core [8],
538 [12], [42]. Each user purchases at least k items and each item
539 is bought by at least k users. We set k=5 and also hold users
540 with no more than 100 items, because users with very long
541 sequences (jIuj > 100) may scalp items.

542 � Taobao is a dataset for clothing matching competition
543 on TianChi3 platform. We use user historical data
544 and item features (image, text) to make the sequen-
545 tial recommendation. Its time span is from 14-Jun-
546 2014 to 15-Jun-2015.
547 � Amazon contains many reviews and product meta-
548 data [43], [44]. We use one large category Clothing,
549 Shoes and Jewelry located in the second half of the
550 website. We acquire the sequential implicit feedback
551 from review histories where the ratings range from 1
552 to 5, obtain the images and text data from product
553 metadata. The original time span is between 29-Sep-
554 2000 and 23-Jul-2014. As feedbacks in previous years
555 are too sparse, we only keep feedbacks within the
556 most recent two years.

557 4.1.2 Multi-Modal Features

558 Multi-modal features are obtained by using the existingmeth-
559 ods. They are normalized to the same range by min-max nor-
560 malization. Then, they are used as the input features (f and g).
561 The visual feature is obtained by the GoogLeNet [40]
562 implemented by BVLC Caffe deep learning framework
563 [45]. This network has 22 layers and has been pre-trained
564 on 1.2M ImageNet ILSVRC2014 images [46]. We apply
565 the output of layer pool5=7x7 s1 to obtain 1024-dimen-
566 sional visual features. They are all positive and are nor-
567 malized to range ½0; 0:5�.
568 To generate the textual features of items, a text descrip-
569 tion of each item is collected first. On Taobao, we directly
570 use item titles which have already been segmented and dis-
571 ordered by the data provider. On Amazon, we combine
572 each item’s category and title as its text data. Then we adopt
573 the GloVe model [41] weighted by TF-IDF [47] to obtain
574 each word’s feature and weight. Finally, the weighted fea-
575 ture for each item is computed to obtain 100-dimensional

576textual features. Their values are in the vicinity of zero and
577are normalized to range ½�0:5; 0:5�.

5784.1.3 Evaluation Metrics

579Performance is evaluated on test set by Recall, Mean Average
580Precision (MAP) [48] and Normalized Discounted Cumula-
581tive Gain (NDCG) [42]. The former one is an evaluation of
582unranked retrieval sets, while the latter two reflect the order
583of items. Here we consider top-k (e.g., k ¼20, 30) recommen-
584dations. Besides, the Area Under the ROC Curve (AUC) [2],
585[5] is introduced to evaluate the overall performance.
586Data is divided by time. We use feedbacks in first
58760 percent of the time for training, 20 percent for valida-
588tion and the rest 20 percent for test. Same as p-RNNs,
589hyperparameters are optimized on the validation set, and
590all models are retrained on the full training set (training
591and validation sets) before obtaining final results on the
592test set.

5934.1.4 Comparisons

594We compare MV-RNNwith several comparative baselines:

595� Random: Items are randomly ranked for all users. The
596AUC of this method is 0.5 [2].
597� POP: This baseline recommends the most popular
598items in the training set for each user u.
599� BPR: This method refers to the BPR-MF for implicit
600feedback [2]. It optimizes the difference of user’s
601preferences for positive and negative items. The cor-
602responding pairwise training procedure has been
603applied to many sequential tasks [11], [12], [13], [18].
604� VBPR: Introduced in [5], this is an extended method
605with visual features based on BPR. It first incorpo-
606rates visual information to build the user’s interest.
607� LSTM: This sequential baseline trained with BPR is
608developed for next basket recommendation [12].
609Instead of basic RNN, LSTM is used in our work.
610Both BPR and LSTM only model the latent feature.
611� p-RNN: The p-RNNs is a feature-rich model for
612session-based recommendation [19]. It has 3 structures
613and 4 training strategies. According to its experiments,
614we choose the best variant ‘Parallel (res)’.
615We design 3 combinations of input and 2 structures for the
616hidden state. There are 4 variants implemented as MV-RNN-
617Con., MV-RNN-Fus., MV-RNN-3mDAE-1U and MV-RNN-
6183mDAE-2U. The former 3 variants are built by the united
619structure, while the last one has the separate structure. The
620prefix ‘MV-RNN-’ can be omitted, and the 4 variants can be
621abbreviated as Con., Fus., 3mDAE-1U and 3mDAE-2U respec-
622tively. The Con. has the highest dimension of hidden state
623(hh 2 R3d), while the rest has the same dimension (hh 2 R2d).
624Additionally, we need to initialize parameters Q to the same
625range, e.g., uniform distribution ½�0:5; 0:5�. The initial hidden
626state hh0 of each sequence is always zero. The learning rate is
627fixed at a ¼ 0:1 for all methods. Besides, the mini-batch size
628for training is set as 4 and users with similar lengths are
629grouped into one batch. This length-adjustment can greatly
630speed up training [49]. Complete codes for all models are
631written by using Theano and are available on GitHub.4 All
632experimental results are also listed on thiswebsite.

TABLE 2
Datasets

(a) Datasets (5-core) used throughout the experiment.

dataset users items feedbacks sparsity

Taobao 1,003,331 343,134 12,613,815 99.996%
Amazon 38,840 22,586 272,949 99.969%

(b) Sub-datesets for the controlled study in Section 4.3.2.

dataset users items feedbacks sparsity

Taobao (10-core) 478,391 145,867 7,558,233 99.989%
Taobao (15-core) 89,634 34,903 1,912,708 99.939%
Taobao (20-core) 3,536 1,843 124,453 98.090%

We list the numbers of users, items, feedbacks, and sparsity of each dataset,
respectively.

3. https://tianchi.shuju.aliyun.com/ 4. https://github.com/cuiqiang1990/MV-RNN
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633 4.2 Optimization on Validation Set

634 4.2.1 Regularization Parameter

635 The best parameters for regularization are listed in Table 3.
636 They are chosen by the evaluations of all the metrics on vali-
637 dation set under the dimension d ¼ 20.
638 In this optimization process, �Q is first selected based on
639 basic methods (BPR, GRU and LSTM), then �ev; ra are cho-
640 sen by grid search. The ranges of these three parameters are
641 �Q; �ev 2 0:001; 0:0001; 0:00001; 0:0½ � and ra 2 0:001;½
642 0:0001; 0:00001�. With the reduction of data size from Tao-
643 bao to Amazon, the best �Q; �ev; ra almost all get bigger.

644 4.2.2 Baseline Selection

645 Although several studies explore the difference between
646 GRU and LSTM [17], [30], few people do comparisons for
647 sequential recommendation. This part aims for complete-
648 ness. Shown in Table 4, the result is the performance by
649 using the best parameters obtained in Section 4.2.1. Please
650 note that all values of Recall, MAP and NDCG in Tables 4,
651 5, 6, 7, 8 and Fig. 4 are represented in percentage.
652 Obviously, the performance of MV-RNN based on LSTM
653 is better than that based on GRU in most cases, except the
654 Con. and Fus. based on LSTM on Taobao. Although LSTM
655 has more parameters, it also has the better model capacity.
656 As a long as the model size is not significantly bigger, we
657 should always consider the model with the best architec-
658 ture. Therefore, in all the following experiments, we con-
659 sider LSTM as the baseline instead of GRU and our MV-
660 RNN is based on LSTM.

6614.2.3 Dimension Analysis

662The dimension analysis is investigated in Fig. 4. We illus-
663trate the performances of top-30 and AUC on the validation
664set. The dimensions are set as d ¼ 10; 15; 20; 25½ �.
665With the increasing of dimension, performances of top-
66630 metrics have similar trends with each other on both
667datasets. BPR and VBPR tend to get worse. They have
668similar trends as well as absolute values. It is difficult to
669tell the difference between VBPR and BPR on Recall,
670MAP, and NDCG, especially on Taobao. The p-RNN
671model is not sensitive to dimension. The LSTM and MV-
672RNN models obtain better performance with the increas-
673ing of dimension on Taobao, while they almost do not
674change with the dimension on Amazon. On the other
675hand, AUCs of all models are much stable with different
676dimensions. VBPR has obviously better performance than
677BPR on both datasets. The 4 variants of MV-RNN are
678nearly coincident with each other. The AUC is not sensi-
679tive to the dimension.
680Generally, it is obvious that LSTM is a very strong base-
681line. Apparently, our MV-RNN model is the best. The opti-
682mal dimension is chosen as d ¼ 20 and it is applied to other
683experiments.

6844.3 Analysis of Experimental Results
685Table 5 illustrates all performances on two datasets with
686four evaluation metrics. Recall, MAP and NDCG focus on
687local performance, while AUC reflects global performance.

TABLE 3
The Best Parameters Acquired on the Validation Set for All Methods

dataset parameter BPR VBPR GRU/LSTM p-RNN based on GRU/

LSTM

based on GRU based on GRU/LSTM

Con. Fus. 3mDAE-1U 3mDAE-2U 3mDAE-1U 3mDAE-2U

Taobao

�Q 0.0 0.0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

�ev - 0.00001 - - 0.0 0.0 0.0 0.0 0.0 0.0

ra - - - - - - 0.0001 0.001 0.00001 0.00001

Amazon

�Q 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

�ev - 0.0001 - - 0.0 0.0 0.0 0.00001 0.00001 0.00001

ra - - - - - - 0.0001 0.0001 0.001 0.001

TABLE 4
The Performance Difference of Our MV-RNN on Validation Set between Using Different Baselines (GRU, LSTM)

dataset Based on GRU Based on LSTM

method @30 (%) AUC method @30 (%) AUC
Recall MAP NDCG Recall MAP NDCG

Taobao

GRU 1.141 0.283 0.622 0.608 LSTM 1.124 0.287 0.603 0.610
Con. 1.410 0.372 0.786 0.679 Con. 1.372 0.358 0.761 0.685
Fus. 1.360 0.362 0.762 0.680 Fus. 1.309 0.332 0.718 0.678

3mDAE-1U 1.362 0.334 0.735 0.675 3mDAE-1U 1.349 0.342 0.738 0.678
3mDAE-2U 1.186 0.338 0.690 0.675 3mDAE-2U 1.196 0.353 0.709 0.676

Amazon

GRU 1.494 0.249 0.657 0.577 LSTM 1.604 0.305 0.717 0.583
Con. 2.210 0.421 1.012 0.687 Con. 2.250 0.433 1.049 0.685
Fus. 2.091 0.418 0.962 0.687 Fus. 2.248 0.415 0.998 0.687

3mDAE-1U 2.237 0.410 1.013 0.688 3mDAE-1U 2.237 0.430 1.038 0.685
3mDAE-2U 2.104 0.401 0.955 0.687 3mDAE-2U 2.283 0.425 1.035 0.690
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688 4.3.1 Performance Comparison

689 From a global perspective, additional multi-modal informa-
690 tion of items (e.g, image and text description) is indeed
691 beneficial. VBPR beats BPR. MV-RNN outperforms LSTM
692 model. Our MV-RNN can effectively model the additional
693 information. For example, the Con. has almost more than 30
694 percent and more than 40 percent improvements over LSTM
695 on Taobao and Amazon respectively with respect to Recall,
696 MAP and NDCG. Its improvements of AUC over LSTM are
697 both around 20 percent on two datasets. As for the rest 3 var-
698 iants which have hidden states of the same length, 3mDAE-
699 1U performs best. In a perspective of statics and dynamics,
700 although both trained by the BPR framework tomaximize the
701 difference of user’s preferences towards positive and negative
702 items, LSTMbeats BPR by a largemargin. The recurrent struc-
703 ture of LSTM can capture sequential information which is
704 helpful for the recommendation.
705 3mDAE and Denoising. In this part, we analyze the four
706 variants of MV-RNN and focus on the 3mDAE. The Con.
707 almost always beats the Fus. but not too much. The highest
708 hidden state dimension of Con. improves its capacity. This
709 phenomenon also shows that feature addition has no great
710 damage to multi-modal modeling. Then, we embody the
711 advantage of 3mDAE and introduce a training setting called
712 denoising. It can help to learn more robust features and
713 acquire the best performance.
714 The denoising AE is first proposed for image classifica-
715 tion on the MNIST database. It can make features more
716 robust and avoid learning the identity function by using
717 corrupted input. Identity function means just mapping the
718 original input to its copy, which happens in the encoding
719 process in AE (e.g., f ! EEf). It is easy to obtain a denoising
720 AE just by a stochastic corruption operation on input. The
721 original corruption mechanism randomly sets some of an
722 input feature to zero with probability 04p < 1. While in
723 our experiment, we make feature itself corrupted.
724 This denoising is conducted for 3mDAE. In this setting,
725 we make some multi-modal data corrupted in the encoding

726process and still reconstruct both modalities in the decoding
727step. Training 3mDAE still requires all the data in Table 2 a.
728The corruption levels are set as p ¼ 0:0; 0:2; 0:3; 0:4½ � and
729p ¼ 0:0; 0:1; 0:2; 0:3½ � for Taobao and Amazon respectively. If
730p ¼ 0:0, the input data in the encoding process is complete.
731The results are still obtained on the original test set where
732all items have all features. Results are shown in eight rows
733at the bottom of the Table 5.
734Obviously, performance can become better than the
735original (p ¼ 0%) by denoising, especially the Recall, MAP
736and NDCG. More importantly, 3mDAE-1U performs best.
737It is able to be better than Con., although Con. has the
738highest hidden state dimension. When we randomly reset
739some features to zero in the encoding process, the noise
740in the whole input data is reduced. However, by recon-
741structing both modalities in the decoding step, the fusion
742feature of our 3mDAE can still keep the useful informa-
743tion in both modalities. Our 3mDAE can acquire more
744robust features. The best corruption levels for 3mDAE-
7451U/2U are p ¼ 0:3=0:4 and p ¼ 0:1=0:1 on two datasets
746respectively.
747The 3mDAE-1U/2U are a one-unit model with the united
748structure and a two-unit model with the separate structure
749respectively. In Table 5, the one-unit model outperforms the

TABLE 5
Evaluation of Different Methods on the Test Set with the Dimension of Latent Vector d ¼ 20

Taobao Amazon

method p @20 (%) @30 (%) AUC p @20 (%) @30 (%) AUC

Recall MAP NDCG Recall MAP NDCG Recall MAP NDCG Recall MAP NDCG

Random - 0.004 0.001 0.002 0.006 0.001 0.003 0.500 - 0.083 0.016 0.040 0.137 0.018 0.056 0.500
POP - 0.113 0.016 0.051 0.218 0.020 0.085 0.441 - 1.418 0.299 0.697 1.993 0.321 0.847 0.553
BPR - 0.191 0.038 0.101 0.274 0.041 0.127 0.573 - 0.641 0.168 0.340 0.812 0.176 0.390 0.511
VBPR - 0.196 0.042 0.106 0.283 0.045 0.131 0.577 - 0.700 0.181 0.368 0.922 0.190 0.423 0.584
LSTM - 0.666 0.162 0.386 0.884 0.171 0.453 0.567 - 1.443 0.283 0.671 1.982 0.301 0.820 0.608
p-RNN - 0.537 0.149 0.335 0.688 0.156 0.382 0.553 - 1.484 0.301 0.708 1.939 0.320 0.831 0.609

Con. - 0.863 0.212 0.502 1.164 0.224 0.592 0.690 - 2.113 0.522 1.092 2.827 0.554 1.294 0.723

Fus. - 0.808 0.212 0.481 1.082 0.223 0.559 0.690 - 2.157 0.508 1.096 2.867 0.538 1.285 0.722

3mDAE-1U

0.0 0.849 0.213 0.499 1.140 0.225 0.586 0.680 0.0 2.190 0.517 1.116 2.869 0.549 1.309 0.722
0.2 0.802 0.205 0.472 1.075 0.216 0.555 0.687 0.1 2.243 0.541 1.149 2.995 0.570 1.352 0.722
0.3 0.881 0.228 0.523 1.174 0.240 0.612 0.680 0.2 2.211 0.529 1.136 2.892 0.558 1.322 0.720
0.4 0.807 0.219 0.488 1.075 0.230 0.570 0.679 0.3 2.217 0.521 1.117 2.968 0.552 1.317 0.721

3mDAE-2U

0.0 0.676 0.208 0.440 0.892 0.217 0.506 0.685 0.0 2.227 0.524 1.108 2.856 0.550 1.286 0.721
0.2 0.750 0.234 0.491 0.971 0.243 0.558 0.683 0.1 2.227 0.528 1.128 2.883 0.555 1.301 0.720
0.3 0.760 0.235 0.494 1.001 0.246 0.568 0.677 0.2 2.162 0.517 1.107 2.906 0.544 1.292 0.722
0.4 0.792 0.243 0.514 1.029 0.253 0.586 0.681 0.3 2.134 0.512 1.104 2.838 0.544 1.305 0.720

We generate top-20 and 30 items for each user. Because of the structure of concatenation, the hidden state dimension of Con. is much larger than the others.

TABLE 6
Results of the Controlled Study in Section 4.3.2

dataset method @30 (%) AUC
Recall MAP NDCG

Taobao (10-core) LSTM 1.366 0.305 0.794 0.603
Con. 1.635 0.365 0.946 0.689

Taobao (15-core) LSTM 2.343 0.752 1.742 0.591
Con. 2.801 0.868 2.040 0.678

Taobao (20-core) LSTM 4.681 13.795 16.651 0.536
Con. 5.449 16.701 19.118 0.623

CUI ET AL.: MV-RNN: A MULTI-VIEW RECURRENT NEURAL NETWORK FOR SEQUENTIAL RECOMMENDATION 9
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750 two-unit model. A united inner structure can better leverage
751 the advantage of multi-view features. The separate structure
752 may be not able to well model the connection between dif-
753 ferent views.
754 p-RNN versus MV-RNN. The session-based p-RNN
755 model also incorporates additional features, but it is compa-
756 rable to LSTM. If we carefully examine the results of p-RNN
757 in its original paper [19], we find that most results of
758 p-RNN are also close to the basic model (‘ID only’ in their
759 paper). The reason is varied as p-RNN is substantially dif-
760 ferent from our MV-RNN. The first one is feature normali-
761 zation. Multi-view features must be normalized to the same
762 range, but only visual features are normalized in their
763 work. Next, different from our strategy in Eq. (14), p-RNN
764 uses output weight matrix to compute the user’s scores on
765 items. This matrix improves the capacity of a model but
766 increases the learning difficulty, especially for the modeling
767 of visual and textual features. We experimented with using
768 this matrix on our Con., but its performance is very close to
769 that of LSTM. Then, different subnets within p-RNN are
770 trained one by one, which can not well construct the connec-
771 tion among multi-view features.

772 4.3.2 A Controlled Study

773 In Table 5, the metrics (Recall, MAP and NDCG) seem to be
774 low, especially on Taobao. Therefore, we conduct a controlled
775 study to explore the factors that influence themetrics.
776 Reducing the number of items (search space)may be help-
777 ful. We extract three sub-datasets from Taobao by increasing
778 the filtering strategy as ½10; 15; 20�-core. The statistics are
779 shown in Table 2 b. In this way, the search space is greatly
780 reduced. Then, we perform experiments by using LSTM and
781 Con. Accordingly, we need to re-select the best parameters
782 and the results are shown in Table 6. With the increasing of
783 k, the three metrics get bigger. Metrics of Taobao (20-core)
784 are obviously bigger than that of the other datasts. This may
785 be because the sparsity of Taobao (20-core) is clearly small.
786 At the same time, our method Con. is always better than
787 LSTM, which shows the effectiveness of our MV-RNN.
788 Therefore, although the absolute values on Taobao are small,
789 they are related to the dataset itself (e.g., sparsity).
790 In summary, our MV-RNN model is better than the
791 others. MV-RNN can well model multi-view features and

792achieves the best and stable performance in different situa-
793tions. The denoising of 3mDAE is a good setting to improve
794performance. Besides, special strategies used in p-RNN are
795not necessary for handling multi-view features. Feature con-
796catenation is natural but very useful. A united structure
797with simultaneous training strategy is easy to use and is bet-
798ter than the separate subnets built for each view in p-RNN.
799These conclusions of joint learning are also confirmed by
800the previous works, like a multi-view model for cross-
801domain user modeling [50].

8024.4 Analysis of Missing Modalities in Test Set
803Multi-modal methods usually hold an assumption that all
804modalities are available. However, in practice, certain
805modality is often missing, like an item without the visual
806feature. In such case, our 3mDAE is theoretically better
807than the concatenation and fusion. To verify this, we
808introduce a setting of test set called missing. First, we
809artificially modify the test set. We set one-third of items
810without visual features, one-third without textual fea-
811tures, and the last one-third with all the multi-modal fea-
812tures. Then, the training procedure also applies the
813denoising, and the only difference between Sections 4.3
814and 4.4 is that missing here is evaluated on our artificial
815test set. The result is shown in Table 7.
816Experimental results indicate that our 3mDAE is very
817promising for tackling missing modalities problem. Both
8183mDAE-1U/2U perform very well and 3mDAE-1U is more
819successful. For example, 3mDAE-1U under p ¼ 0:3 incr-
820eases by about 10 percent with respect to Con. on Recall,
821MAP and NDCG on Taobao. This improvement acquired
822by 3mDAE-1U under p ¼ 0:1 on Amazon is about 9 percent.
823Besides, 3mDAE-1U/2U also have some increases on AUC
824over Con. and Fus.. Our 3mDAE is greatly better than others
825in thismissing setting and it can effectively handle the items
826with missing modalities.

8274.5 Analysis of Cold Start
828We investigate the performance of MV-RNN on cold start
829items in the test set. These items usually account for a large
830proportion and cold start is an intractable problem in practi-
831cal recommender systems. Previous works like VBPR [5]
832usually only consider cold start items and neglect the rest.

TABLE 7
A Setting Calledmissing is Introduced and Measured on an Artificial Test Set,

where Some Items’ Multi-Modal Features are Missing (Deleted)

missing - Taobao missing - Amazon

MV-RNN p @20 (%) @30 (%) AUC p @20 (%) @30 (%) AUC

Recall MAP NDCG Recall MAP NDCG Recall MAP NDCG Recall MAP NDCG

Con. - 0.784 0.189 0.453 1.042 0.199 0.531 0.665 - 1.903 0.448 0.946 2.537 0.473 1.118 0.692
Fus. - 0.748 0.187 0.439 0.986 0.197 0.511 0.649 - 1.775 0.423 0.913 2.265 0.444 1.054 0.696

3mDAE-1U

0.0 0.732 0.199 0.447 0.975 0.209 0.521 0.653 0.0 1.823 0.430 0.924 2.431 0.457 1.101 0.691
0.2 0.743 0.181 0.427 0.999 0.191 0.504 0.679 0.1 2.059 0.491 1.040 2.696 0.517 1.217 0.703
0.3 0.832 0.216 0.496 1.102 0.228 0.578 0.671 0.2 2.003 0.488 1.028 2.561 0.510 1.176 0.702
0.4 0.746 0.191 0.440 1.000 0.202 0.517 0.666 0.3 2.001 0.470 0.995 2.645 0.498 1.171 0.705

3mDAE-2U

0.0 0.605 0.181 0.388 0.791 0.188 0.444 0.652 0.0 1.779 0.392 0.864 2.414 0.414 1.042 0.688
0.2 0.643 0.180 0.400 0.851 0.189 0.464 0.673 0.1 1.964 0.452 0.979 2.624 0.479 1.163 0.704
0.3 0.676 0.194 0.424 0.897 0.204 0.492 0.670 0.2 1.858 0.482 0.986 2.476 0.506 1.145 0.702
0.4 0.701 0.201 0.441 0.920 0.210 0.508 0.674 0.3 1.827 0.496 1.003 2.435 0.522 1.171 0.704

This setting aims to study the ability of MV-RNN to handle missing modalities.
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833 While in our work, we expand this general setting because
834 the rest items may produce a large volume of feedbacks.
835 Two new experimental settings are designed, Recall@30
836 and AUC are applied to test the performance, as shown in
837 Table 8. Furthermore, we compute the improvement to ana-
838 lyze the effect of multi-modal information on cold start
839 items. The improvements are shown in Table 9 and Fig. 5.

840 4.5.1 Subsets of Test Set

841 According to each item’s support number in the test set, we
842 divide items into three subsets: cold-start (44), active (55)
843 and whole (test set). Numbers of items of each subset are
844 listed in Table 8a. The cold start items account for 40.5 and
845 81.4 percent on Taobao and Amazon respectively.
846 From the perspective of basic performance, as shown in
847 Tables 8b and 8c, the best values are scattered in four var-
848 iants. It is difficult to draw a consistent conclusion.

849As for the improvement shown in Table 9, most improve-
850ments on cold-start are higher than those on whole, and are
851much higher than those on active. Comparatively, the basic
852model like LSTM has difficulty in predicting cold start items,
853while it is easier to obtain good performance on active items.
854Thus on the contrast, it is easy to design a model to substan-
855tially enhance the performance on cold-start, while it is more
856difficult to acquire obvious improvement on active. Under
857such situation, our MV-RNN still performs very well on
858active. For example, most improvements of MV-RNN are
859over 10 percent on active. MV-RNN not only has a significant
860improvement on cold start items but also has a sufficient
861improvement on active items.
862In Table 9, there are some surprising improvements about
863Recall@30 on Amazon. We specify the improvement of MV-
864RNN over LSTM as 3� 104%, because the performance of
865LSTM on cold-start is zero. This poor performance of LSTM
866can be explained from the perspective of probability. When

TABLE 8
Cold Start Performance on Two Datasets Under the Evaluation of Recall@30 and AUC with Dimension of Latent Feature d ¼ 20

(a) Numbers of items in each subset and each bin of the test set. Numbers of feedbacks are also counted.

dataset subsets of test set bins of test set

cold-start active ½1; 2� ½3; 4� ½5; 6� ½7; 8� ½9; 10� ½11; 12� ½13; 14� ½15; 16� ½17; 18� ½19; �

Taobao
items 72,273 106,001 46,919 25,354 24,807 16,776 11,286 8,170 5,958 4,648 3,626 30,730

feedbacks 152,623 2,918,957 64,363 88,260 135,031 124,920 106,703 93,649 80,135 71,916 63,380 2,243,223

Amazon
items 12,399 2,826 8,970 3,429 1,422 525 340 184 98 64 49 144

feedbacks 24,122 24,054 12,548 11,574 7,662 3,885 3,203 2,100 1,312 990 855 4,047

(b) Evaluation of cold start performance on Taobao. The interval is the accumulation of several bins.

eva. method p subsets of test set (%) intervals of test set (%)

cold-start active whole ½1; 2� ½1; 4� ½1; 6� ½1; 8� ½1; 10� ½1; 12� ½1; 14� ½1; 16� ½1; 18� all

Recall @30

LSTM - 0.184 0.920 0.884 0.242 0.184 0.133 0.115 0.106 0.103 0.100 0.098 0.100 0.884
Con. - 0.153 1.216 1.164 0.173 0.153 0.114 0.101 0.098 0.098 0.097 0.097 0.097 1.164
Fus. - 0.144 1.131 1.082 0.174 0.144 0.109 0.105 0.103 0.103 0.106 0.105 0.109 1.082

3mDAE-1U 0.3 0.269 1.221 1.174 0.362 0.269 0.195 0.171 0.165 0.160 0.157 0.157 0.158 1.174
3mDAE-2U 0.4 0.621 1.050 1.029 0.839 0.621 0.437 0.378 0.354 0.340 0.333 0.328 0.324 1.029

AUC

LSTM - 0.608 0.565 0.567 0.657 0.608 0.519 0.487 0.473 0.467 0.463 0.462 0.462 0.567
Con. - 0.659 0.691 0.690 0.681 0.659 0.631 0.623 0.620 0.620 0.619 0.621 0.621 0.690
Fus. - 0.714 0.688 0.690 0.742 0.714 0.652 0.631 0.622 0.618 0.616 0.616 0.616 0.690

3mDAE-1U 0.3 0.651 0.681 0.680 0.676 0.651 0.614 0.603 0.600 0.600 0.600 0.601 0.603 0.680
3mDAE-2U 0.4 0.649 0.683 0.681 0.671 0.649 0.620 0.611 0.607 0.606 0.606 0.607 0.608 0.681

(c) Evaluation of cold start performance on Amazon. The interval is the accumulation of several bins.

eva. method p subsets of test set (%) intervals of test set (%)

cold-start active whole ½1; 2� ½1; 4� ½1; 6� ½1; 8� ½1; 10� ½1; 12� ½1; 14� ½1; 16� ½1; 18� all

Recall @30

LSTM - 0.000 3.970 1.982 0.000 0.000 0.000 0.003 0.033 0.034 0.066 0.074 0.165 1.982
Con. - 0.398 5.263 2.827 0.215 0.398 0.538 0.676 0.826 0.996 1.135 1.192 1.398 2.827
Fus. - 0.328 5.413 2.867 0.215 0.328 0.463 0.558 0.702 0.876 1.017 1.114 1.276 2.867

3mDAE-1U 0.1 0.623 5.675 2.995 0.207 0.323 0.434 0.547 0.692 0.869 1.038 1.144 1.337 2.995
3mDAE-2U 0.1 0.319 5.454 2.883 0.199 0.319 0.450 0.552 0.705 0.874 1.034 1.149 1.335 2.883

AUC

LSTM - 0.496 0.721 0.608 0.471 0.496 0.514 0.531 0.549 0.561 0.569 0.576 0.582 0.608
Con. - 0.660 0.787 0.723 0.647 0.660 0.669 0.678 0.688 0.696 0.700 0.703 0.707 0.723
Fus. - 0.667 0.777 0.722 0.654 0.667 0.676 0.683 0.691 0.697 0.701 0.704 0.707 0.722

3mDAE-1U 0.1 0.656 0.788 0.722 0.640 0.656 0.667 0.677 0.687 0.694 0.698 0.702 0.705 0.722
3mDAE-2U 0.1 0.658 0.783 0.720 0.645 0.658 0.666 0.675 0.685 0.692 0.697 0.700 0.703 0.720

CUI ET AL.: MV-RNN: A MULTI-VIEW RECURRENT NEURAL NETWORK FOR SEQUENTIAL RECOMMENDATION 11
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867 we train a sequence, we practically apply LSTM to model
868 a joint probability pðx1; . . . ; xtÞ, where xi represents an item.
869 When we predict n items in corresponding test sequence,
870 we actually predict a conditional probability pðxtþ1; . . . ;
871 xtþnjx1; . . . ; xtÞ. Because the 81.4 percent cold start items and
872 the corresponding 50.1 percent feedbacks on Amazon result
873 in limited interactions among users and items, both probabil-
874 ities are very small. Therefore, it is very hard to make accu-
875 rate recommendation under Recall@30 on Amazon. After we
876 incorporate the additional content information, 4 variants
877 of MV-RNN have performances of 0.398, 0.328, 0.623 and
878 0.319 percent respectively. The absolute values are small, but
879 we obtain very large but reasonable improvements. This
880 strange and extreme phenomenon exactly reflects the great
881 power of additional content information and the powerful
882 modeling capability ofMV-RNN.

883 4.5.2 Intervals of Test Set

884 According to the support number of each item in the test set,
885 we divide items into ten bins (e.g., ½1; 2�, ½3; 4�, ½5; 6�). For
886 example, bin ½1; 2� has the items that appear for 1 or 2 times.
887 Numbers of items in each bin are listed in Table 8a. In order
888 to alleviate the fluctuation of performance on each bin, per-
889 formance is recorded on cumulative bins (e.g., ½1; 4�) which
890 are called intervals.
891 When the bin number increases, performance becomes bet-
892 ter, as seen from Tables 8 b and 8 c. That is because it is easier
893 to predict frequent items. On Taobao, there is a strange phe-
894 nomenon. Performance decreases first on a few bins in the
895 front and then increases. As the decrement is not significant,

896we can still think the performance is growing. Thenwemainly
897focus on the analysis of improvements. For better representa-
898tion, improvements are illustrated by curves in Fig. 5.
899These growth curves do not always have the same change
900on two datasets. On Taobao, curves tend to be flat. On
901Amazon, as the bin has a larger proportion of cold start items
902(seeing from the right side of a figure to its left side), the
903improvement almost becomes larger. This indicates that
904multi-modal information is indeed beneficial to relieve cold
905start. In other words, when the cold start problem gets worse
906on small bins with a bigger proportion of cold start items,
907multi-modal information can significantly relieve this prob-
908lem. Because cold start items have few interactionswith users,
909directly related multi-modal information would effectively
910represent the item’s characteristics and the user’s interest.
911AUC is much more stable than Recall@30. We consider
912the difference of user’s preferences towards positive and
913negative items in AUC, and the BPR training process exactly
914maximizes this difference. For Recall@30 curves, there is a
915large difference between Taobao and Amazon. These curves
916on Taobao are separate from each other, but they almost
917come together in the last interval all. Perhaps because of
918the small proportion of feedbacks on the interval ½1; 18�
919(27.0 percent), there would be some fluctuations in the per-
920formance of each model. These curves on Amazon have an
921obvious increasing law when the bin number gets smaller.
922For AUC curves, the situation is much better. On Taobao,
923most improvements are stable. For example, improvements
924of MV-RNN are around 30 percent. On Amazon, the smaller
925the bin number, the larger the improvement.

Fig. 4. Recall@30, MAP@30, NDCG@30, and AUC performances on validation set with varied dimensions of latent feature d ¼ 10; 15; 20; 25½ �.

TABLE 9
Based on the Cold Start Performance in Table 8, We Compute Improvements (%) on Each Subset

method Taobao - Recall@30 Taobao - AUC Amazon - Recall@30 Amazon - AUC

cold active whole cold active whole cold active whole cold active whole

Con. versus LSTM -16.73 32.20 21.70 8.33 22.42 21.67 3�104 32.57 42.62 33.12 9.07 18.88
Fus. versus LSTM -22.05 22.87 22.41 17.41 21.88 21.64 3�104 36.34 44.61 34.55 7.76 18.69
3mDAE-1U versus LSTM 45.90 32.68 32.82 6.98 20.65 19.92 3�104 42.93 51.10 32.31 9.23 18.65
3mDAE-2U versus LSTM 237.05 14.14 16.46 6.67 20.88 20.13 3�104 37.38 45.45 32.63 8.53 18.36

The best corruption levels p for our 3mDAE-1U/2U is the same as in Table 8, and we omit the p in this table. The cold refers to the cold-start.
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926 These curves, especially those on Amazon, can greatly
927 support the following conclusion. Multi-modal informa-
928 tion can significantly relieve the item cold start problem.
929 Besides, the worse the cold start, the more powerful the
930 multi-modal information.

931 4.5.3 Visualization of Learned Features

932 In this part, we make the visualization of learned features
933 by similarity retrieval to investigate whether they are corre-
934 lated or complementary. There are five different input fea-
935 tures iix; iif ; iig; iim; ½iix; iim� represented in Eqs. (1), (2), (3), and
936 (4). Given a query item, we select top-5 most similar items
937 based on the euclidean distance for each kind of feature.
938 The features are acquired by 3mDAE-1U under p ¼ 0:3 and
939 the results are shown in Fig. 6.

940Obviously, the similar items under different kinds of fea-
941tures vary greatly, and the multi-view (latent, visual, tex-
942tual) features are complementary to each other. (1) For the
943latent feature iix, the similar items are greatly different from
944each other as iix are just learned by the feedback. If the latent
945features of two items are similar, probably because they
946were both purchased by many people. (2) Whether it is item
947itself or the background in the image, the top-5 items based
948on the visual feature iif are very similar in appearance. How-
949ever, the second and the forth items in this line obviously
950belong to other categories. The visual feature is powerful
951but can not reflect the intrinsic characteristics of items, like
952material of clothes. (3) On the other hand, the textual feature
953iig is acquired by the item description. It can truly reflect
954what the product is and can ignore the effect of the back-
955ground in an image, but it is not intuitive to show the color,
956shape, etc. (4) The fusion feature iim is a combination of iif
957and iig. It mainly integrates the external and intrinsic charac-
958teristics of the item, such as the style and material of clothes.
959However, such characteristics can not generate precise rec-
960ommendation because there is no one-to-one match
961between each characteristic and each item. (5) The final item
962feature ½iix; iim� fuses iix; iif ; iig. It can fully reflect the character-
963istics of an item and help to understand the user’s overall
964interest. In summary, multi-view features iix; iif ; iig used in
965our work are complementary.

9665 CONCLUSION

967In this work, we have proposed a novel multi-view recur-
968rent model (MV-RNN) for sequential recommendation and
969alleviating the item cold start problem. First, we construct
970comprehensive item representation with latent, visual and
971textual features by three different combinations. A 3mDAE
972model is introduced to build the fusion feature based on
973visual and textual features. Then the user’s interest is

Fig. 5. Based on the cold start performance in Table 8, we calculate improvements (%) on each interval. The best corruption levels p for our 3mDAE-
1U/2U is the same as in Table 8, and we omit the p in this figure.

Fig. 6. Visualization of similarity retrieval based on the euclidean dis-
tance. Features are acquired by 3mDAE-1U under p ¼ 0:3 on Taobao.
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974 captured by the recurrent structure. We devise two types of
975 inner structures to handle multi-view features. Next, we
976 design a united objective function to combine the preference
977 loss of BPR and the reconstruction loss of our 3mDAE.
978 Experiments validate the state-of-the-art performance of
979 MV-RNN. The fusion feature of 3mDAE helps to learn
980 more robust features and tackle the missing modalities
981 problem. Experiments confirm that a united inner structure
982 can better leverage the advantage of multi-view features
983 than a separate one. The multi-modal information like the
984 image and text description could indeed significantly allevi-
985 ate the item cold start problem.
986 In the future, we would investigate the item detection
987 and segmentation in images. The items in images often
988 have a large proportion of unrelated background, especially
989 in the Taobao dataset. We would like to obtain the more
990 accurate item representation. These can motivate the model
991 to improve performance.
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