
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Multi-behavioral Sequential Prediction with
Recurrent Log-bilinear Model

Qiang Liu, Shu Wu, Member, IEEE, and Liang Wang, Senior Member, IEEE

Abstract—With the rapid growth of Internet applications, sequential prediction in collaborative filtering has become an emerging and
crucial task. Given the behavioral history of a specific user, predicting his or her next choice plays a key role in improving various online
services. Meanwhile, there are more and more scenarios with multiple types of behaviors, while existing works mainly study sequences
with a single type of behavior. As a widely used approach, Markov chain based models are based on a strong independence
assumption. As two classical neural network methods for modeling sequences, recurrent neural networks cannot well model short-term
contexts, and the log-bilinear model is not suitable for long-term contexts. In this paper, we propose a Recurrent Log-BiLinear (RLBL)
model. It can model multiple types of behaviors in historical sequences with behavior-specific transition matrices. RLBL applies a
recurrent structure for modeling long-term contexts. It models several items in each hidden layer and employs position-specific
transition matrices for modeling short-term contexts. Moreover, considering continuous time difference in behavioral history is a key
factor for dynamic prediction, we further extend RLBL and replace position-specific transition matrices with time-specific transition
matrices, and accordingly propose a Time-Aware Recurrent Log-BiLinear (TA-RLBL) model. Experimental results show that the
proposed RLBL model and TA-RLBL model yield significant improvements over the competitive compared methods on three datasets,
i.e., Movielens-1M dataset, Global Terrorism Database and Tmall dataset with different numbers of behavior types.

Index Terms—Collaborative filtering, sequential prediction, multi-behavior, recurrent log-bilinear.

F

1 INTRODUCTION

NOWADAYS, Collaborative Filtering (CF) [14] plays an
important role in a large number of applications, e.g.,

recommender systems, information retrieval and social net-
work analysis. Conventional CF methods focus on modeling
users preference based on their historical choices of items
and always ignore the sequential information. It is reason-
able to assume that user preferences change with his or her
behavioral sequence. Meanwhile, rather than with merely
one type of behaviors, e.g., purchasing in e-commerce and
clicking on websites, there are many sequential scenarios
with multiple types of behaviors towards items, e.g., click-
ing, purchasing, adding to favorites in e-commerce and
downloading, using, uninstalling in app usage. Accordingly,
it is necessary to model multi-behavioral sequences and
collaboratively predict what a user will prefer next under a
specific behavior. For instance, multiple types of behaviors,
i.e., posting, sharing and commenting, on social media has
been separately modeled and studied recently, which makes
great contribution to user interest detection [47]. Besides e-
commerce and other Internet applications, multi-behavioral
sequential prediction can be implemented for social good,
such as predicting security events in a specific area [21] [41]
or predicting air quality [48].

• Qiang Liu, Shu Wu and Liang Wang are with the Center for Research on
Intelligent Perception and Computing (CRIPAC), National Laboratory of
Pattern Recognition (NLPR), Institute of Automation, Chinese Academy
of Sciences (CASIA) and the University of Chinese Academy of Sciences
(UCAS), Beijing, 100000, China.
E-mail: {qiang.liu, shu.wu, wangliang}@nlpr.ia.ac.cn.

Nowadays, some efforts have been put into developing
CF methods with sequential information [3] [21] [33] [40]
[46]. To the best of our knowledge, none of existing methods
are designed for modeling sequences with multiple types
of behaviors. And if we directly treat different behaviors
towards one item as different elements in sequences, or sim-
ply ignore the differences among behaviors, conventional
methods will have difficulty in revealing the correlations
among behaviors and items. As shown in the example of
app usage in Figure 1, different behaviors reveal users’
different attitudes towards apps. Downloading and using
means you may like the app, while uninstalling means
you do not like the app and similar ones should not be
recommended. So, it is essential to find a proper way to
reveal the correlations among behaviors and items.

Moreover, existing methods still have their own limita-
tions even for single-behavioral sequences. Markov Chain
(MC) based models [44] [33] [30] have become the most pop-
ular methods for sequential prediction. MC based models
aim to predict the users’ next behavior based on the past
behaviors. A transition matrix is estimated, which can give
the probability of an action based on the previous ones.
However, a major problem of MC based models is that
all the components are independently combined, indicat-
ing that it makes strong independence assumption among
multiple factors [40].

Recently, Recurrent Neural Networks (RNN) have been
successfully employed to model temporal dependency for
different applications, such as sentence modeling tasks [23]
[24] [25], video modeling [8], sequential click prediction [46]
and location prediction [21]. When modeling the sequential
data, RNN assumes that the temporal dependency changes
monotonously along with positions in a sequence. This

ar
X

iv
:1

60
8.

07
10

2v
4

 [
cs

.I
R

]
 2

7
Ja

n
20

17

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

20:00

20:05

20:15

20:20

20:25

20:45

21:00

Fig. 1. Taking app usage prediction as an example of multi-behavioral
sequential prediction. This example shows a user’s behaviors towards
apps in an hour, including downloading, using and uninstalling. We can
predict what app the user is going to download or use next.

means that, one element, e.g., a word, a frame and a product,
in a sequence usually has more significant effect than the
previous one for prediction. Such rules may well model
words in a sentence or frames in a video, since adjacent
words or frames have significant correlation. The larger the
distance between two words or two frames, the smaller
the correlation. However, for behavior prediction tasks, this
assumption does not confirm to complex real situations, es-
pecially for the most recent elements in historical sequences.
Sometimes, several most recent elements have similar effects
on users’ next behavior. For instance, if you went to a gym, a
restaurant and a shopping market yesterday morning, after-
noon and evening respectively, these three behaviors may
have similar effects on your behaviors today. Sometimes,
most recent elements have more complex effects on the
future. For instance, going to a gym yesterday has dominant
effects on how you exercise today, and what you ate at
a restaurant yesterday or what you bought at a shopping
market yesterday can affect what you want to eat today
a lot. There is no guarantee that one element has more
or less significant effect than the previous one. The effects
of most recent elements in modeling human behaviors are
much more complicated than that in modeling sentences or
videos. But RNN can only tell us that behaviors in yesterday
morning have more significant effects than behaviors in
yesterday afternoon, and behaviors in yesterday afternoon
have more significant effects than behaviors in yesterday
evening. Accordingly, we can say that, RNN cannot well
model short-term contexts in a sequence.

Different from the recurrent architecture in RNN based
language models [23] [24] [25], the Log-BiLinear (LBL)
model [27] represents each word in a sentence, i.e., each

position in a sequence, with a specific matrix. It can better
model the complex situations of local contexts in sequences.
But when the sequence is too long, a maximal length is usu-
ally set. And in real behavior prediction scenarios, length
of behavioral sequences is usually not fixed. So, LBL cannot
well model long-term contexts in a sequence.

Furthermore, time difference between input elements,
e.g., continuous time difference between apps that the user
has behaviors on in Figure 1, is another key factor in
sequential modeling. However, to our best knowledge, none
of existing models, including above MC based methods,
RNN and LBL, can jointly model sequential information and
time difference information in one framework.

In this paper, to overcome above shortcomings of con-
ventional methods and model multi-behavioral sequences,
we propose two novel sequential prediction methods, i.e.,
Recurrent Log-BiLinear (RLBL) model and Time-Aware
Recurrent Log-BiLinear (TA-RLBL) model. First, to capture
the properties of different types of behaviors in historical
sequences, we employ behavior-specific transition matrices
in our model. To the best of our knowledge, this is the
first work which is designed for predicting multi-behavioral
sequences Second, we design RLBL model as a recurrent
architecture to capture long-term contexts in sequences. It
models several elements in each hidden layer and uses
position-specific transition matrices to capture short-term
contexts of the historical sequence. Our RLBL not only can
model the subtle characteristics of the most recent items in a
sequence, but also can deal with long-term contexts with
a recurrent structure. Third, we further extend the RLBL
model based on time difference information, and propose
the TA-RLBL model. Rather than specific matrices for each
position in RLBL, we use specific matrices, i.e., time-specific
transition matrices, for each time difference value between
input elements in TA-RLBL. Since it is difficult to estimate
matrices for all the continuous time difference values, we
divide all the possible temporal values into discrete bins.
For a specific time difference value in one time bin, we can
calculate the corresponding transition matrix via a linear
interpolation of transition matrices of the upper bound
and lower bound. Incorporating continuous time difference
information, TA-RLBL can further improve the performance
of RLBL.

The main contributions of this work are listed as follows:

• We firstly address the problem of multi-behavioral
sequential prediction, which is a significant prob-
lem in sequential prediction. And we use behavior-
specific matrices to represent the effects of different
types of behaviors.

• The RLBL model incorporates position-specific ma-
trices and the recurrent structure, which can well
model both short- and long-term contexts in histori-
cal sequences.

• TA-RLBL uses time-specific matrices to jointly model
sequential information and time difference informa-
tion in one framework, which further improves the
performance of RLBL.

• Experiments conducted on three real-world datasets
show that RLBL and TA-RLBL are effective and
clearly outperform state-of-the-art methods.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

The rest of the paper is organized as follows. In section
2, we review some related work on sequential prediction.
Then we give the problem definition of multi-behavioral
sequential prediction in section 3. Section 4 and 5 detail our
RLBL model and TA-RLBL model respectively. In section 6,
we introduce the learning methods of our proposed models.
In section 7, we conduct experiments on three real-world
datasets and compare with several state-of-the-art methods.
Section 8 concludes our work and discusses future research.

2 RELATED WORKS

In this section, we review several types of methods for
sequential prediction and time-aware prediction, i.e., time-
aware neighborhood based methods, time-aware factoriza-
tion methods, markov chain based methods and neural
network based methods.

2.1 Time-aware Neighborhood

Time-aware neighborhood models [7] [17] [18] may be the
most natural methods for modeling sequential information.
These methods employ neighborhood based algorithms to
capture temporal effects via giving more relevance to re-
cent observations and less to past observations. However,
though these methods may confirm to our first instinct and
properties of sequential information, neighborhood based
methods are unable to reveal the underlying properties in
users’ historical sequences.

2.2 Time-aware Factorization Methods

Matrix factorization (MF) based methods [29] [15] [14] have
become the state-of-the-art approach to collaborative filter-
ing. Nowadays, MF based methods have been extended for
more general and complex situations [31] [34]. Among them,
time-aware factorization based models have been exten-
sively studied. Tensor Factorization (TF) [1] [42] treats time
slices as another dimension and generates latent vectors of
time slices via factorization to capture the underlying prop-
erties in the behavioral history. TimeSVD++ [13] learns time-
aware representations for users and items in different time
slices. However, factorization based models have difficulties
in generating latent representations for time slices which
has never or seldom appeared in the training data. Thus,
factorization based models are not able to accurately predict
item in the future time slices.

2.3 Markov Chain Based Methods

Based on the Markov assumption, MC based methods are
widely used models for sequential prediction tasks [44]. MC
based models predict users’ next behaviors via estimating a
transition matrix, which gives the probability of an action
based on the previous ones. Via factorization of the per-
sonalized probability transition matrices of users, Factoriz-
ing Personalized Markov Chain (FPMC) [33] can provide
more accurate prediction for each sequence. FPMC is also
extended by using the user group [30] or incorporating
the location constraint [5]. Recently, some factors of human
brain have been added into MC based methods, including
interest-forgetting curve [4] and dynamics of boredom [11].

However, the main drawback of MC based models is the
independent combination of the past components, which
lies in a strong independence assumption and confines the
prediction accuracy. Then MC based methods are extended
by using representation learning. Hierarchical Representa-
tion Model (HRM) [40] learns the hierarchical representa-
tion of behaviors in the last transaction and in the past
history of a user to predict behaviors in the next transaction.
And Personalized Ranking Metric Embedding (PRME) [10]
learns embeddings of users according to distances between
locations. These methods still face a problem that they only
model items in the most recent history and previous items
can only be modeled by constant user latent vectors. Thus,
except items in the most recent history, other items after
model training will be ignored. User representations cannot
change dynamically along with behavioral sequences.

2.4 Neural Network Based Methods

Recently, some prediction models, especially language mod-
els [26], are proposed based on neural networks. The
most classical neural language model is proposed via a
single layer neural network [2]. Among variety language
models, RNN has been the most successful one in mod-
eling sentences [23] [24] [25]. It has successfully applied
in variety natural language processing tasks, such as ma-
chine translation [6] [38], conversation machine [36] [37]
and image caption [22] [39]. Recently, RNN based models
also achieve successive results in other areas. For video
analyzing, RNN brings satisfying results for action recog-
nition [8]. Incorporating users’ each clicking as an input
element of each layer, RNN has greatly improved the perfor-
mance of sequential click prediction [46]. Spatial-Temporal
Recurrent Neural Netwrks (ST-RNN) [21] learns geographi-
cal distance-specific transition matrices in RNN framework
for location prediction. And Dynamic REcurrent bAsket
Model (DREAM) [45] uses pooling methods in each layer of
RNN for aggregating items in one transaction and achieves
state-of-the-art performance in next basket recommendation
[45]. Context-Aware Recurrent Neural Netwrks (CA-RNN)
[20] incorporates variety of contextual information in the
RNN structure for recommender systems. However, when
modeling sequential data, RNN assumes that temporal de-
pendency changes monotonously along with the positions
in a sequence, which means one element in a sequence
usually has more significant effect than the previous one for
prediction. This is usually suitable for words in sentences
or frames in videos. But it does not confirm to practical
situations for predicting behaviors, especially for the most
recent elements of a historical sequence. Several most recent
elements may usually have similar or even more complex
effects on a user’s next choice. But RNN can only tell us
that the most recent item has more significant effect than
the previous items. So, we can say that RNN cannot well
model short-term contexts in behavior modeling.

LBL [27] is another widely-used language model, which
represents elements at each position in a sequence with
specific matrices. And a hierarchical softmax [28] is utilized
to accelerate LBL model. However, when sequences are too
long, a maximal length is usually set and long-term contexts
are discarded. So, LBL cannot well model long-term contexts

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

...

...

Fig. 2. Illustration of the Recurrent Neural Networks (RNN) model. RNN
is a recurrent architecture with multiple hidden layers. The hidden status
of RNN changes dynamically along with sequences, where the trend
is monotonous. RNN has difficulty in modeling short-term contexts in
behavioral sequences.

in sequences, which often exist in real behavior prediction
situations.

There also exist some studies on RNN based methods
taking insight in modeling short-term and long-term con-
texts, e.g., Multi-timescale RNN [43] [19] and Clockwork
RNN [16]. Based on a hierarchical RNN structure [9], these
methods model short-term dependencies and long-term de-
pendencies separately with multiple RNNs. These multiple
RNNs are at different timescales, where the fastest one
operates every input element, and relatively slower ones
take delays and skip some input elements according to cor-
responding timescales. However, these RNN structures aim
to better capture long-term dependencies in sequences via
incorporating larger timescales in some of the many RNNs.
Although they can indeed achieve better performance com-
paring with conventional structures in some applications
[43] [16] [19], they still model input elements according
to sequential orders in a RNN structure. Accordingly, they
cannot overcome the drawback of RNN that temporal de-
pendency changes monotonously. It is still hard for these
methods to well model short-term contexts in behavior
modeling scenarios.

3 PROBLEM DEFINITION

The multi-behavioral sequential prediction problem we
study in this work can be formulated as follows. We have a
set of users and a set of items denoted as U = {u1, u2, ...}
and V = {v1, v2, ...} respectively. Multiple types of behav-
iors are denoted as B = {b1, b2, ...}. Each behavior of user
u is associated with a behavioral type and a timestamp.
Then the sequential behavioral history of user u consists
of items V u = {vu1 , vu2 , ...}, corresponding behavioral types
Bu = {bu1 , bu2 , ...} and timestamps Tu = {tu1 , tu2 , ...}. Given
behavioral history of users towards items, the task is to
predict what a specific user will choose next under a specific
behavior.

...

Fig. 3. Illustration of the Log-BiLinear (LBL) model. LBL is a feedforward
neural network with a single linear hidden layer. In LBL, each position
in sequences is modeled with a specific transition matrix. And a max-
imal number of modeled elements is usually set. LBL has difficulty in
modeling long-term contexts in behavioral sequences.

Here, taking the application in e-commerce as an ex-
ample, there will be four types of behaviors (i.e., clicking,
purchasing, adding to favorites and adding to shopping
chart) denoted as {b1, b2, b3, b4}. The task is to predict which
item a user would like to click, purchase, add to favorites
or add to shopping chart next. Similarly, in the app usage,
there will be three types of behaviors (i.e., downloading,
using and uninstalling) denoted as {b1, b2, b3}. Then the
task becomes predicting which app a user would like to
download, use or uninstall next.

4 RECURRENT LOG-BILINEAR MODEL (RLBL)
In this section, we present the recurrent log-bilinear model.
We first introduce the RNN model and LBL model, then
detail the architecture of RLBL with a single type of behav-
iors and introduce how RLBL can be employed to model
multiple types of behaviors.

4.1 Recurrent Neural Networks
The architecture of RNN is shown in Figure 2. It consists
of an input layer, an output unit, multiple hidden layers, as
well as inner weight matrices [46]. The activation values of
the hidden layers are computed as:

hu
k = f

(
Whu

k−1 + Crvu
k

)
, (1)

where hu
k ∈ Rd denotes the hidden representation of user

u at position k in a sequence, rvu
k
∈ Rd denotes the

representation of the kth input item of user u. f(x) is the
activation function. C ∈ Rd×d and W ∈ Rd×d mean the
transition matrix for the current items and the previous
status respectively. W can propagate sequential signals,
and C can capture users’ current behavior. This activation
process can be repeated iteratively and then the status at
each position in a sequence can be calculated.

4.2 Log-bilinear Model
The Log-BiLinear (LBL) model [27] is a deterministic model
that may be viewed as a feedforward neural network with a
single linear hidden layer [12]. Using LBL for the sequential
prediction problem, the final predicted representation of a
sequence is generated based on the input items and the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

transition matrices at each position. As shown in Figure 3,
in the LBL model, the representation at next position is a
linear prediction:

hu
k =

n−1∑
i=0

Cirvu
k−i

, (2)

where Ci ∈ Rd×d denotes the transition matrix for the
corresponding position in a sequence, and n is the number
of elements modeled in a sequence.

4.3 Modeling Single Type of Behaviors
As discussed in the previous sections, though both RNN
and LBL have achieved satisfying results, they still have
their own drawbacks. RNN cannot well handle short-term
contexts in a sequence, while LBL cannot well model long-
term contexts.

To capture short-term and long-term contexts in histori-
cal sequences simultaneously, instead of modeling only one
element in each hidden layer in RNN, we model several ele-
ments in each hidden layer and incorporate position-specific
matrices into the recurrent architecture. As illustrated in
Figure 4(a), given a user u, the hidden representation of the
user at the position k in a sequence can be computed as:

hu
k = Whu

k−n +
n−1∑
i=0

Cirvu
k−i

, (3)

where n is the number of input items modeled in one layer
of RLBL, which is called the window width in this paper.
The position-specific transition matrices Ci ∈ Rd×d captures
the impact of short-term contexts, i.e., the ith item in one
layer of RLBL, on user behaviors. And the characteristics
of users’ long-term history are modeled via the recurrent
framework. Moreover, when we only consider one input
item in each layer and set the window width n = 1, the
formulation of RLBL will be as the same as that of RNN
ignoring the nonlinear activation function.

Notice that, when the sequence is shorter than the win-
dow width or the predicted position is at the very first part
of a sequence, i.e., k < n. Equation 3 should be rewritten as:

hu
k = Whu

0 +
k−1∑
i=0

Cirvu
k−i

, (4)

where hu
0 = u0, denoting the initial status of users. The ini-

tial status of all users should be the same because personal
information does not exist when a user has not selected an
item. This representation u0 can be used to model cold start
users. The equation in this special situation can be viewed
as the same as that of a regular LBL model.

4.4 Modeling Multiple Types of Behaviors
Although there exist some scenarios with one type of behav-
ior, e.g., purchasing in e-commerce and clicking on websites,
there are much more applications with multiple types of
behaviors towards items. For instance, users will click items,
purchase items and add items to favorites in e-commerce.
And users may download apps, use apps and uninstall
apps. Thus, it is necessary to model multi-behavioral se-
quences and collaboratively predict what a user will choose
next under a specific behavior.

We can simply ignore different types of behaviors, or
treat different behaviors towards one item as different el-
ements in conventional models. However, it is hard to
model the correlation among different behaviors towards
one item. Here, we incorporate behavior-specific matrices to
capture properties of multiple types of behaviors. Then, the
representation of user u at position k can be calculated as:

hu
k = Whu

k−n +
n−1∑
i=0

CiMbuk−i
rvu

k−i
, (5)

where Mbui
∈ Rd×d denotes a behavior-specific transition

matrix modeling the corresponding behavior on the ith
item of user u. Note that, behavior-specific matrices can be
omitted if there is only one type of behavior. Incorporating
behavior-specific matrices, RLBL is the first approach which
can be used to model the underlying properties of different
types of behaviors in historical sequences.

Now, via calculating inner product, the prediction of
whether user u would conduct behavior b on item v at the
sequential position k + 1 can be made as:

yu,k+1,b,v = (suk)
TMbrv = (hu

k + uu)
TMbrv , (6)

where suk denotes the representation for the status of user u
at the sequential position k, containing dynamic representa-
tion hu

k and static latent representation uu ∈ Rd.

5 TIME-AWARE RLBL MODEL (TA-RLBL)
Sequential models often ignore the continuous time dif-
ference between input elements. The time difference infor-
mation is important for prediction considering that shorter
time differences usually have more significant impact on the
future comparing with longer time differences. For instance,
suppose there are two items, va and vb, in a user’s purchas-
ing history. The user bought item va last night and item vb
last month. It is probably that the user’s choice about what
to buy next is mainly influenced by item va. In contrast, if
item vb is bought last mourning, it is probably that both
item va and vb have similar impact to the user’s choice
because of similar interests in a short period. Moreover, as
the purchasing behavior of some items is periodical such as
buying tooth paste every month, the effect of time difference
becomes more significant in such situations.

Accordingly, in this section, we extend our RLBL model
with time difference information and introduce the time-
aware recurrent log-bilinear model.

5.1 Proposed Model
As discussed above, it will be reasonable if we incorporate
time difference information in our RLBL model. Here, we re-
place position-specific transition matrices with time-specific
transition matrices and propose a time-aware RLBL model.
As shown in Figure 4(b), given a user u, representation at
position k can be calculated as:

hu
k = Whu

k−n +
n−1∑
i=0

Ttuk−tuk−i
rvu

k−i
, (7)

where tuk denotes the current timestamp, tuk−i means the
timestamp of each item in one layer of TA-RLBL, and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

...

...

Position-specific transition

...

...

(a) The RLBL model.

...

...

Time-specific transition

...

...

(b) The TA-RLBL model.

Fig. 4. Illustration of the Recurrent Log-BiLinear (RLBL) model and the Time-Aware Recurrent Log-BiLinear (TA-RLBL) model. RLBL employs a
recurrent architecture to capture long-term contexts. It models several elements in each hidden layer and incorporates position-specific transition
matrices to capture short-term contexts in a historical sequence. TA-RLBL further extends the RLBL model. It replaces position-specific transition
matrices with time-specific transition matrices to model time difference information. Behavior-specific matrices can be incorporated in RLBL and
TA-RLBL to capture multiple types of behaviors in sequences.

Ttuk−tuk−i
∈ Rd×d denotes the time-specific transition matrix

for the time difference tuk − tuk−i between timestamp tuk−i
and tuk . The time-specific transition can capture the time-
aware impacts of the most recent behavioral history.

Moreover, similar to RLBL, when k < n, Equation 7
should be rewritten as:

hu
k = Whu

0 +
k−1∑
i=0

Ttuk−tuk−i
rvu

k−i
, (8)

where hu
0 = u0, denoting the initial status of users. To model

multiple types of behavior, behavior-specific transition ma-
trices are also applied in TA-RLBL model:

hu
k = Whu

k−n +
n−1∑
i=0

Ttuk−tuk−i
Mbuk−i

rvu
k−i

. (9)

Then, similar to RLBL, the prediction of whether user u
would conduct behavior b on item v at sequential position
k + 1 can be computed as:

yu,k+1,b,v = (suk)
TMbrv = (hu

k + uu)
TMbrv . (10)

5.2 Linear Interpolation for Learning Transition Matri-
ces

If we learn a distinct matrix for each possible continuous
time difference value, we have to estimate a great number
of time-specific transition matrices and the model tends
to overfit. Here, similar to the method in [21], we equally
partition the range of all the possible time difference values
into discrete bins. Only the transition matrices of the upper
and lower bounds of time bins are needed to be estimated
in our model. For time difference values in a time bin, their
transition matrices can be calculated via a linear interpola-
tion. Mathematically, the time-specific transition matrix Ttd

for time difference value td can be calculated as:

Ttd =

[
TL(td)(U(td)− td) + TU(td)(td − L(td))

]
[(U(td)− td) + (td − L(td))]

, (11)

where U(td) and L(td) denote the upper bound and lower
bound of time difference td, TU(td) and TL(td) denote
the time-specific transition matrices for U(td) and L(td)
respectively. Such a linear interpolation method can solve
the problem of learning time-specific transition matrices
for continuous time differences. To be noted, although the
change of time-specific matrices in each discrete time bin
is linear, the global change in the entire range of all the
possible time difference values is nonlinear.

For instance, if the range of all the possible time differ-
ence values is partitioned into one-hour bins, and we want
to calculate the transition matrix for time difference value
1.6h, the upper bound and lower bound of 1.6h will be
2h and 1h respectively, and the corresponding time-specific
transition matrix T1.6h can be calculated as:

T1.6h =
[T1h(2h− 1.6h) + T2h(1.6h− 1h)]

[(2h− 1.6h) + (1.6h− 1h)]

= 0.4T1h + 0.6T2h

. (12)

Until now, we have detailed the RLBL and TA-RLBL
model. Both models can well capture sequential informa-
tion. If there exists explicit time information, TA-RLBL
model is more suitable than that of RLBL model. And if
the dataset is not associated with detailed time information,
RLBL mode will be more suitable than TA-RLBL model.
Both models are constructed under the same framework and
can be applied according to actual situations.

6 PARAMETER LEARNING

In this section, we introduce the learning process of our
proposed RLBL and TA-RLBL model with Bayesian Person-
alized Ranking (BPR) [32] and Back Propagation Through
Time (BPTT) [35].

6.1 Learning of RLBL

BPR [32] is a state-of-the-art pairwise ranking framework for
the implicit feedback data. BPR has been used as objective

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

function for learning of RNN based models in behavioral
prediction tasks [21] [45]. The basic assumption of BPR is
that a user prefers a selected element than a negative one.
Formally, we need to maximize the following probability:

p(u, k + 1, b, v � v′) = g(yu,k+1,b,v − yu,k+1,b,v′) , (13)

where v′ denotes a negative sample, and g(x) is a nonlinear
function which is selected as:

g(x) =
1

1 + e−x
. (14)

Incorporating the negative log likelihood, we can minimize
the following objective function equivalently:

J1 =
∑

ln(1 + e−(yu,k+1,b,v−yu,k+1,b,v′)) +
λ

2
‖Θ1‖2 , (15)

where Θ1 = {U,R,W,C,M} denotes all the parameters
to be estimated, λ is a parameter to control the power of
regularization. And the derivations of J1 with respect to the
parameters can be calculated as:

∂J1
∂uu

=
∑ Mb(rv′ − rv)l(u, k + 1, b, v � v′)

1 + l(u, k + 1, b, v � v′)
+ λuu ,

∂J1
∂rv

= −
∑ (Mb)

T
(hu

k + uu)l(u, k + 1, b, v � v′)
1 + l(u, k + 1, b, v � v′)

+ λrv ,

∂J1
∂rv′

=
∑ (Mb)

T
(hu

k + uu)l(u, k + 1, b, v � v′)
1 + l(u, k + 1, b, v � v′)

+ λrv′ ,

∂J1
∂Mb

=
∑ (hu

k + uu)(rv′ − rv)
T l(u, k + 1, b, v � v′)

1 + l(u, k + 1, b, v � v′)
+λMb ,

∂J1
∂hu

k

= −
∑ Mb(rv′ − rv)l(u, k + 1, b, v � v′)

1 + l(u, k + 1, b, v � v′)
,

where

l(u, k + 1, b, v � v′) = e−(yu,k+1,b,v−yu,k+1,b,v′) .

The derivations of the output layer have been calculated.
Under each layer of the recurrent structure, similar to the
conventional RNN model, RLBL can be trained by using
the Back Propagation Through Time (BPTT) algorithm [35],
which has been used in practical sequential prediction mod-
els [21] [46]. For user u, given the derivation ∂J1

∂hu
k

of the rep-
resentation hu

k at sequential position k, the corresponding
gradient of parameters at the hidden layer can be calculated
as:

∂J1
∂hu

k−n
= WT ∂J1

∂hu
k

,

∂J1
∂WT

=
∂J1
∂hu

k

(hu
k−n)

T ,

∂J1
∂rvu

k−i

= (Mbuk−i
)T (Ci)

T ∂J1
∂hu

k

,

∂J1
∂Ci

=
∂J1
∂hu

k

(rvu
k−i

)T (Mbuk−i
)T ,

∂J1
∂Mbuk−i

= (Ci)
T ∂J1
∂hu

k

(rvu
k−i

)T .

This process can be repeated iteratively, and the gradients
of all the parameters are obtained. Then, the model can
be learned via Stochastic Gradient Descent (SGD) until
converge.

6.2 Learning of TA-RLBL
For learning of TA-RLBL, using BPR [32], similar to Equa-
tion 14 and 15, we need to minimize the following objective
function:

J2 =
∑

ln(1 + e−(yu,k+1,b,v−yu,k+1,b,v′)) +
λ

2
‖Θ2‖2 , (16)

where Θ2 = {U,R,W,T,M} denotes all the parameters
to be estimated in TA-RLBL. Similarly, the derivations of J2
with respect to the parameters can be computed as:

∂J2
∂uu

=
∑ Mb(rv′ − rv)l(u, k + 1, b, v � v′)

1 + l(u, k + 1, b, v � v′)
+ λuu ,

∂J2
∂rv

= −
∑ (Mb)

T
(hu

k + uu)l(u, k + 1, b, v � v′)
1 + l(u, k + 1, b, v � v′)

+ λrv ,

∂J2
∂rv′

=
∑ (Mb)

T
(hu

k + uu)l(u, k + 1, b, v � v′)
1 + l(u, k + 1, b, v � v′)

+ λrv′ ,

∂J2
∂Mb

=
∑ (hu

k + uu)(rv′ − rv)
T l(u, k + 1, b, v � v′)

1 + l(u, k + 1, b, v � v′)
+λMb ,

∂J2
∂hu

k

= −
∑ Mb(rv′ − rv)l(u, k + 1, b, v � v′)

1 + l(u, k + 1, b, v � v′)
,

where

l(u, k + 1, b, v � v′) = e−(yu,k+1,b,v−yu,k+1,b,v′) .

Then, similar to RLBL, using BPTT [35], for user u, given
the derivation ∂J2

∂hu
k

of the representation hu
k at the sequential

position k, the corresponding gradient of parameters at the
hidden layer can be calculated as:

∂J2
∂hu

k−n
= WT ∂J2

∂hu
k

,

∂J2
∂WT

=
∂J2
∂hu

k

(hu
k−n)

T ,

∂J2
∂rvu

k−i

= (Mbuk−i
)T (Ttuk−tuk−i

)T
∂J2
∂hu

k

,

∂J2
∂Ttuk−tuk−i

=
∂J2
∂hu

k

(rvu
k−i

)T (Mbuk−i
)T ,

∂J2
∂Mbuk−i

= (Ttuk−tuk−i
)T
∂J2
∂hu

k

(rvu
k−i

)T .

The process above can be repeated iteratively, and we can
obtain all the gradients. After that, the model can be trained
via SGD until converge.

7 EXPERIMENTS

In this section, we empirically investigate the performance
of RLBL and TA-RLBL. As shown in Table 1, we conduct
our experiments on three scenarios with different numbers
of behavioral types. We first introduce our experimental set-
tings. Then we conduct experiments to compare RLBL and
TA-RLBL with different window width and experiments
to compare performances of single behavior and multiple
behaviors. We also give comparison of our models and some
state-of-the-art methods with varying dimensionality. Then,
we study the performance of models under different length
of behavioral history. Finally, we analyse the computational
time and convergence of our proposed methods.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 1
Experimental summarization.

dataset scenario #behavioral types behaviors behavior to predict

Movielens watching movies 5 rating 5, 4, 3, 2, 1 stars rating 5 or 4 stars
Global Terrorism Database terrorist attack 7 armed, unarmed, assassination, bombing, facility, hijacking, hostage attack (all types)

Tmall e-commerce 4 clicking, purchasing, adding to favorites, adding to shopping cart purchasing

7.1 Experimental Settings

Our experiments are conducted on three real datasets with
different numbers of behavioral types. Details of these
datasets are illustrated in Table 1.

• Movielens-1M1 is a widely used dataset, associated
with timestamps, for the rating prediction in recom-
mender systems. It contains about 1,000,000 rating
records of 4,000 movies by 6,000 users. The ratings
are divided into five levels, indicating users’ different
levels of preference, which can be viewed as five
different types of behaviors. With this dataset, we
aim to predict which movie a user will rate 5 or 4
stars next, i.e., which movie a user will prefer next.

• Global Terrorism Database2 includes more than
125,000 terrorist incidents that have occurred all
around the world since 1970 conducted by about
3,000 terrorist organizations. This dataset consists of
7 behavioral types, i.e., different attacking types, as
indicated in Table 1. For social good, we would like
to predict which province or state a terrorist organi-
zation will attack. Thus, it is available for us to take
action before accidents happen and save people’s life.

• Tmall3 is a dataset collected from Tmall4, one of
the biggest online shopping websites in China. It
contains about 200,000 shopping records belonging
to 1,000 users on 10,000 items. The temporal infor-
mation of the dataset is extracted based on the day
level. It contains four different types of behaviors:
clicking, purchasing, adding to favorites and adding
to shopping cart. It suits for the task of collaborative
prediction on multi-behavioral sequences. On this
dataset, we aim to predict what users will purchase
next.

For each behavioral sequence of these three datasets,
we use first 70% of the items in the sequence for training,
following 10% data as the validation set for tuning param-
eters, e.g., the dimensionality of latent representations, and
remaining 20% for testing. The regularization parameter is
set as λ = 0.01. And we use line search to select learning
rates in each iteration.

We compare RLBL and TA-RLBL with both conventional
and state-of-the-art sequential methods.

• POP is a naive baseline method that recommends the
most popular items to users.

• MF [29] is one of the state-of-the-art methods for
conventional collaborative filtering. It factorizes a

1. http://grouplens.org/datasets/movielens/
2. http://www.start.umd.edu/gtd/
3. https://102.alibaba.com/competition/addDiscovery/index.htm
4. https://www.tmall.com/

user-item matrix into two low rank matrices, each of
which represents the latent factors of users or items.

• MC is a classical sequential model based on markov
assumption, and is used as a sequential baseline
method.

• TF [42] is an extension of MF method. It extends MF
from two dimensions to three dimensions, and the
temporal information is modeled as the additional
dimension.

• FPMC [33] extends conventional MC methods and
factorizes personalized probability transition matri-
ces of users. It is a widely-used method for sequential
prediction and next basket recommendation.

• HRM [40] learns the representation of behaviors in
the previous transaction and predicts next behaviors.
It has become a state-of-the-art method for next
basket recommendation.

• RNN [45] is a state-of-the-art method for the
sequential prediction. It has been successfully ap-
plied in some applications, such as sentence mod-
eling, click prediction, location prediction and next
basket recommendation.

Considering TF learns latent vectors for time slices, and
MC, FPMC and HRM predict future behaviors according
to behaviors in the last transaction, we need to split trans-
actions in different datasets according to corresponding
application scenarios. So, we set the length of transaction in
the Movielens dataset, the Global Terrorism Database and
the Tmall dataset as one week, one month and one day
respectively.

As above methods cannot model multi-behavioral se-
quences, when conducting compared methods on multi-
behavioral datasets, we ignore different types of behaviors
in behavioral histories. This means we treat different behav-
iors towards one item as the same.

Moreover, to investigate the performance of our pro-
posed methods and compared methods, we select several
widely-used evaluation metrics for our experiments.

• Recall@k and F1-score@k are two important metrics
for ranking tasks. The evaluation score for our ex-
periments is computed according to where the next
selected item appears in the predicted list. We report
recall@k and F1-score@k with k = 1, 2, 5 and 10 in
our experiments. The larger the value, the better the
performance.

• Mean Average Precision (MAP) is another widely
used global evaluation in ranking tasks, which mea-
sure the quality of the whole ranking list. Top-bias
property of MAP is particularly significant in evalu-
ating ranking tasks such as top-n recommendation.
The larger the value, the better the performance.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 2
Comparison of RLBL and TA-RLBL with varying window width n and dimensionality d = 8.

(a) Performance on the Movielens dataset.

method n recall@1 recall@2 recall@5 recall@10 F1-score@1 F1-score@2 F1-score@5 F1-score@10 MAP

RLBL

2 0.0067 0.0103 0.0333 0.0508 0.0067 0.0069 0.0111 0.0093 0.0377
3 0.0070 0.0104 0.0334 0.0510 0.0070 0.0070 0.0111 0.0093 0.0381
4 0.0070 0.0107 0.0338 0.0520 0.0070 0.0072 0.0113 0.0095 0.0385
5 0.0070 0.0108 0.0343 0.0527 0.0070 0.0072 0.0114 0.0096 0.0386
6 0.0071 0.0112 0.0354 0.0538 0.0071 0.0074 0.0118 0.0098 0.0395
7 0.0070 0.0111 0.0354 0.0543 0.0070 0.0074 0.0118 0.0099 0.0393
8 0.0070 0.0108 0.0351 0.0535 0.0070 0.0072 0.0117 0.0097 0.0390

TA-RLBL

2 0.0070 0.0106 0.0343 0.0529 0.0070 0.0071 0.0114 0.0096 0.0388
3 0.0071 0.0105 0.0338 0.0523 0.0071 0.0071 0.0113 0.0094 0.0385
4 0.0071 0.0108 0.0337 0.0522 0.0071 0.0073 0.0113 0.0095 0.0388
5 0.0070 0.0110 0.0366 0.0553 0.0068 0.0074 0.0123 0.0101 0.0396
6 0.0072 0.0115 0.0372 0.0554 0.0072 0.0076 0.0124 0.0101 0.0404
7 0.0070 0.0115 0.0362 0.0549 0.0070 0.0076 0.0121 0.0100 0.0398
8 0.0070 0.0110 0.0348 0.0539 0.0070 0.0073 0.0118 0.0100 0.0392

(b) Performance on the Global Terrorism Database.

method n recall@1 recall@2 recall@5 recall@10 F1-score@1 F1-score@2 F1-score@5 F1-score@10 MAP

RLBL

2 0.1577 0.2448 0.4378 0.6104 0.1577 0.1632 0.1459 0.1110 0.2930
4 0.1642 0.2691 0.4676 0.6395 0.1642 0.1794 0.1559 0.1163 0.3082
6 0.1624 0.2686 0.4768 0.6468 0.1624 0.1791 0.1589 0.1176 0.3090
9 0.1580 0.2848 0.4865 0.6748 0.1580 0.1899 0.1622 0.1227 0.3153
10 0.1569 0.2806 0.4846 0.6659 0.1569 0.1871 0.1615 0.1211 0.3130
15 0.1567 0.2660 0.4682 0.6470 0.1567 0.1773 0.1561 0.1176 0.3053
20 0.1690 0.2775 0.4872 0.6572 0.1690 0.1850 0.1624 0.1195 0.3165

TA-RLBL

2 0.1642 0.2763 0.4740 0.6451 0.1697 0.1842 0.1580 0.1173 0.3117
4 0.1681 0.2758 0.4719 0.6411 0.1686 0.1839 0.1573 0.1166 0.3187
6 0.1678 0.2758 0.4833 0.6524 0.1678 0.1839 0.1611 0.1186 0.3146
9 0.1634 0.2895 0.4926 0.6730 0.1634 0.1930 0.1642 0.1224 0.3199
10 0.1622 0.2864 0.4910 0.6672 0.1622 0.1909 0.1637 0.1213 0.3180
15 0.1618 0.2731 0.4746 0.6527 0.1618 0.1821 0.1582 0.1187 0.3107
20 0.1697 0.2849 0.4839 0.6629 0.1697 0.1899 0.1613 0.1205 0.3197

(c) Performance on the Tmall dataset.

method n recall@1 recall@2 recall@5 recall@10 F1-score@1 F1-score@2 F1-score@5 F1-score@10 MAP

RLBL

2 0.1507 0.2170 0.3712 0.4690 0.1507 0.1447 0.1237 0.0853 0.2704
3 0.1480 0.2515 0.4118 0.5176 0.1480 0.1677 0.1373 0.0941 0.2781
4 0.1467 0.2311 0.3646 0.4953 0.1467 0.1541 0.1215 0.0901 0.2689
5 0.1600 0.2158 0.3975 0.5519 0.1600 0.1439 0.1325 0.1003 0.2836
6 0.1502 0.2272 0.3822 0.5596 0.1502 0.1515 0.1274 0.1017 0.2806
7 0.1493 0.2553 0.4074 0.5272 0.1493 0.1702 0.1358 0.0959 0.2819
8 0.1387 0.2324 0.4019 0.5395 0.1387 0.1549 0.1340 0.0981 0.2770

TA-RLBL

2 0.1351 0.2302 0.3669 0.4493 0.1351 0.1535 0.1223 0.0817 0.2608
3 0.1268 0.1931 0.3497 0.4541 0.1268 0.1287 0.1166 0.0826 0.2579
4 0.1441 0.2450 0.4084 0.4780 0.1441 0.1633 0.1361 0.0869 0.2820
5 0.1413 0.2366 0.3871 0.5461 0.1413 0.1577 0.1290 0.0993 0.2804
6 0.1253 0.2039 0.4081 0.4454 0.1253 0.1359 0.1360 0.0810 0.2521
7 0.1234 0.2213 0.3556 0.4412 0.1234 0.1475 0.1185 0.0802 0.2523
8 0.1198 0.2063 0.3472 0.4247 0.1198 0.1375 0.1157 0.0772 0.2454

7.2 RLBL VS. TA-RLBL

To compare the performances of our proposed RLBL and
TA-RLBL, and investigate their performances with different
window size, we conduct experiments on the three datasets
with varying window size n. The results evaluated by
recall, F1-score and MAP are illustrated in Table 2. We can
clearly observe that, TA-RLBL performs better that RLBL
in most cases. On the Movielens dataset, TA-RLBL clearly
achieves a better performance evaluated by all the metrics
with all the window width and the performance difference
between the two models are stable. On the Global Terror-

ism Database, TA-RLBL performs better than RLBL mostly,
especially evaluated by the global metrics MAP. But under
window width n = 9, the RLBL model achieves a slightly
better recall@10 and F1-score@10 scores. These observations
clearly indicate that replacing position-specific transition
with time-specific transition can achieve better performance
when there exists explicit time information. However, on the
Tmall dataset, RLBL performs better than TA-RLBL in most
cases. The reason may be that time information in the Tmall
dataset is detailed to the day level. In the Tmall dataset,
there are averagely 5.56 times of clicking, 1.65 times of
purchasing, 1.42 times of adding to favorites, and 1.25 times

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

of adding to shopping chart in one day conducted by one
user. For these behaviors happening in the same day, there
exists only sequential information of behaviors on items,
but no more detailed time information. Accordingly, time-
specific transition matrices for behaviors in one day will
become the same, and orders among them will be discarded.
Therefore, time-specific transition in TA-RLBL brings slight
performance decrease on the Tmall dataset. Accordingly, it
is necessary to select a proper model between RLBL and
TA-RLBL according to whether there exists enough detailed
time information in the dataset. For TA-RLBL incorporates
time difference information, when the dataset has detailed
time information, TA-RLBL will perform better. Otherwise,
RLBL will be a better choice.

The experimental results in Table 2 provide some hints
in selecting the best window width n for RLBL and TA-
RLBL in our experiments. Performances of our models
on Movielens are stable and the best performances are
obviously achieved at n = 6. On the Tmall dataset and
the Global Terrorism Database, the performances are not
so stable evaluated by different metrics. We can select the
best parameters according to the global metric MAP, which
considers all the positions in a ranking list. Then the best
window width for the Global Terrorism Database is n = 9,
and the best window width for the Tmall dataset is n = 5.
For the rest of our experiments, we report the performances
of RLBL and TA-RLBL under the best window width.
Moreover, for metrics recall@p and F1-score@p, there seems
existing a rough pattern. For smaller p, better recall values
and F1-score values of RLBL and TA-RLBL are achieved
with smaller window width n. While for larger p, better
recall values and F1-score values of RLBL and TA-RLBL are
achieved with larger window width n.

7.3 Multiple Behaviors VS. Single Behavior

We have analyzed performances of RLBL and TA-RLBL
modeling multiple behaviors. To investigate the impact of
multiple behaviors and single behavior on prediction effec-
tiveness, we need to obtain performances of RLBL and TA-
RLBL modeling a single behavior. As we ignore different
types of behaviors when implementing compared methods,
we also ignore multiple types of behaviors conducted on
items in sequences when implementing RLBL and TA-RLBL
in this experiment. Thus, the data of a user becomes a se-
quence consisting of items without behavioral types. Then,
performances of the proposed methods under a single type
of behavior can be obtained. To be noted, the partition of
three datasets among training, testing and validation stays
the same.

The performance comparison of modeling multiple be-
haviors and single behavior evaluated by recall, F1-score
and MAP on three datasets is shown in Table 3. We can
clearly observe the significant improvements brought by
modeling multiple behaviors. Comparing with modeling
single behavior, MAP improvements of RLBL modeling
multiple behaviors are 2.92%, 10.52% and 6.41% on three
datasets respectively. And for TA-RLBL modeling multiple
behaviors, comparing with modeling single behavior, the
MAP improvements become 2.96%, 10.46% and 6.42%,
which are close to previous ones. Moreover, we can also

TABLE 3
Comparison of multiple behaviors and single behavior.

(a) Performance on the Movielens dataset with dimensionality d = 8
and window width n = 6.

behaviors method recall@1 recall@5 recall@10 MAP

single
RNN 0.0063 0.0318 0.0484 0.0362
RLBL 0.0068 0.0343 0.0519 0.0384

TA-RLBL 0.0068 0.0360 0.0535 0.0392

multiple RLBL 0.0071 0.0354 0.0538 0.0395
TA-RLBL 0.0072 0.0372 0.0554 0.0404

(b) Performance on the Global Terrorism Database with dimensionality
d = 8 and window width n = 9.

behaviors method recall@1 recall@5 recall@10 MAP

single
RNN 0.1216 0.4168 0.5912 0.2600
RLBL 0.1254 0.4723 0.6665 0.2853

TA-RLBL 0.1298 0.4783 0.6648 0.2896

multiple RLBL 0.1580 0.4865 0.6748 0.3153
TA-RLBL 0.1634 0.4926 0.6730 0.3199

(c) Performance on the Tmall dataset with dimensionality d = 8 and
window width n = 5.

behaviors method recall@1 recall@5 recall@10 MAP

single
RNN 0.1283 0.3410 0.4397 0.2432
RLBL 0.1389 0.3581 0.5277 0.2666

TA-RLBL 0.1227 0.3824 0.5221 0.2636

multiple RLBL 0.1600 0.3822 0.5519 0.2836
TA-RLBL 0.1413 0.4081 0.5461 0.2804

see that, even ignoring multiple types of behaviors, RLBL
and TA-RLBL can still outperform RNN with a relatively
significant advantage, which indicates the effectiveness of
position-specific and time-specific transition. Meanwhile,
comparing results of RLBL and TA-RLBL in Table 2 with
results of RNN in Table 3, even not with the best window
width, most of the results of RLBL and TA-RLBL are still
better than the performance of RNN. This indicates the ef-
fectiveness and stability of RLBL and TA-RLBL with varying
window width.

7.4 Performance Comparison with Different Methods
We compare RLBL, TA-RLBL and competitive methods with
varying dimensionality d evaluated by recall and MAP on
the three datasets. The results on the Movielens dataset,
the Global Terrorism Database and the Tmall dataset are
illustrated in Figure 5, 6 and 7 respectively. Compared to
the baseline performance of POP, the performances of MF,
MC and TF have very similar improvement on the three
datasets. They all have their shortcomings. Since MF cannot
model sequential information, MC cannot model collabora-
tive information, and TF has difficulty in predicting future
behaviors, none of them achieves very satisfactory results.
Jointly modeling sequential information and collaborative
information, FPMC achieves great improvement comparing
with these three methods. Learning latent representations of
recent behaviors, HRM further improves the performance
of FPMC. Furthermore, RNN brings another large improve-
ment on the three datasets, and is clearly the best one among
all the compared methods. Moreover, we can observe that,
our proposed RLBL model and TA-RLBL model achieve

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

2 4 6 8 10 12 14
1

2

3

4

5

6

7

8
x 10

−3

re
ca

ll@
1

dimensionality
2 4 6 8 10 12 14

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

re
ca

ll@
5

dimensionality

2 4 6 8 10 12 14
0.01

0.02

0.03

0.04

0.05

0.06

re
ca

ll@
10

dimensionality
2 4 6 8 10 12 14

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

M
A

P

dimensionality

POP MF MC TF PFMC HRM RNN RLBL TA−RLBL

Fig. 5. Performance comparison on the Movielens dataset with varying
dimensionality d and window width n = 6.

the best performance on all the three datasets in terms
of all the metrics. Using the performances with the best
dimensionality of each method, comparing with RNN, the
MAP improvements of RLBL are 9.18%, 21.27% and %16.64
on the Movielens dataset, the Global Terrorism Database
and the Tmall dataset respectively. And the MAP improve-
ments of TA-RLBL are 11.62%, 23.04% and 15.31% on the
three datasets respectively. These results show the superi-
ority of our methods brought by multi-behavior modeling
and incorporating position-specific in RLBL or time-specific
transition in TA-RLBL.

In Figure 5, 6 and 7, we can also observe the performance
curves of all the methods growing along with dimension-
ality n. All the curves clearly show the great advantages
of RLBL and TA-RLBL comparing with other compared
methods with different dimensionality. The performance
difference between RLBL and TA-RLBL discussed above can
also be observed from the performance curves. Moreover,
the curves show that the performances of our models are
stable in a large range on different datasets evaluated by
different metrics. And even not with the best dimensional-
ity, our methods can still outperform compared methods.
According to the curves, we select the dimensionality as
d = 8, and we report corresponding performances in the
rest of our experiments.

7.5 Comparison with Different Length of Behavioral
History
Similar to the strategy in [40], we split behavior sequences
into three different types according to their length: short,
medium and long. Thus, we can investigate the performance
of models under different situations. In our experiments,
for roughly equal splitting of behavioral sequences, we set
the thresholds for the Movielens dataset as 50 and 200, the
thresholds for the Global Terrorism Database as 50 and 200,
and the thresholds for the Tmall dataset as 100 and 500.

The performance comparison of FPMC, HRM, RNN,
RLBL and TA-RLBL with different length of behavioral
history evaluated by recall, F1-score and MAP is shown
in Table 4. From the results, we can see that RLBL and
TA-RLBL performs better than compared methods, i.e.,
FPMC, HRM and RNN, in all the situations. This shows

2 4 6 8 10 12 14
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

re
ca

ll@
1

dimensionality
2 4 6 8 10 12 14

0.2

0.25

0.3

0.35

0.4

0.45

0.5

re
ca

ll@
5

dimensionality

2 4 6 8 10 12 14

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

re
ca

ll@
10

dimensionality
2 4 6 8 10 12 14

0.1

0.15

0.2

0.25

0.3

0.35

M
A

P

dimensionality

POP MF MC TF PFMC HRM RNN RLBL TA−RLBL

Fig. 6. Performance comparison on the Global Terrorism Database with
varying dimensionality d and window width n = 9.

2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

re
ca

ll@
1

dimensionality
2 4 6 8 10 12 14

0.1

0.15

0.2

0.25

0.3

0.35

0.4

re
ca

ll@
5

dimensionality

2 4 6 8 10 12 14
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

re
ca

ll@
10

dimensionality
2 4 6 8 10 12 14

0.05

0.1

0.15

0.2

0.25

0.3

M
A

P

dimensionality

POP MF MC TF FPMC HRM RNN RLBL TA−RLBL

Fig. 7. Performance comparison on the Tmall dataset with varying
dimensionality d and window width n = 5.

the flexibility of our methods with variety length of be-
havioral history. Moreover, FPMC and HRM have the best
performances on medium-length sequences, followed by
long-length sequences. This also confirms the results and
consequences in [40], where FPMC and HRM perform best
on medium-length sequences. For RNN, RLBL and TA-
RLBL, the longer the sequences, the better the performances.
This may because FPMC and HRM only model the most
recent behaviors when making prediction, and previous be-
haviors can only be revealed by constant user latent vectors.
Then, except most recent behaviors, other behaviors after
model training will be ignored. So, with longer behavioral
sequences, there will be more behaviors ignored, and poorer
performances will be achieved. While models with recurrent
structure, i.e., RNN, RLBL and TA-RLBL, can take the whole
sequence into consideration, and user representations can
change dynamically along with behavioral sequences. Thus,
our RLBL and TA-RLBL can easily deal with the situation
when sequences are too long.

7.6 Analysis on Computational Time and Convergence
To investigate the efficiency of our proposed methods, we
illustrate the computational time of RNN, RLBL and TA-
RLBL in each iteration during training on three datasets in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 4
Performance comparison with different behavioral history length.

(a) Performance on the Movielens dataset with dimensionality d = 8
and window width n = 6.

length method recall@1 recall@5 recall@10 MAP

short

FPMC 0.0052 0.0250 0.0433 0.0325
HRM 0.0057 0.0283 0.0456 0.0339
RNN 0.0062 0.0313 0.0478 0.0357
RLBL 0.0070 0.0351 0.0535 0.0391

TA-RLBL 0.0071 0.0368 0.0550 0.0400

medium

FPMC 0.0054 0.0257 0.0441 0.0333
HRM 0.0060 0.0290 0.0464 0.0346
RNN 0.0063 0.0317 0.0483 0.0361
RLBL 0.0072 0.0356 0.0540 0.0397

TA-RLBL 0.0073 0.0373 0.0556 0.0405

long

FPMC 0.0053 0.0254 0.0438 0.0330
HRM 0.0059 0.0287 0.0460 0.0344
RNN 0.0064 0.0320 0.0487 0.0364
RLBL 0.0073 0.0359 0.0544 0.0400

TA-RLBL 0.0074 0.0377 0.0561 0.0409

(b) Performance on the Global Terrorism Database with dimensionality
d = 8 and window width n = 9.

length method recall@1 recall@5 recall@10 MAP

short

FPMC 0.0935 0.3834 0.5658 0.2341
HRM 0.0966 0.3980 0.5725 0.2410
RNN 0.1180 0.4066 0.5833 0.2544
RLBL 0.1507 0.4728 0.6639 0.3073

TA-RLBL 0.1557 0.4770 0.6621 0.3124

medium

FPMC 0.0981 0.4006 0.5748 0.2422
HRM 0.1029 0.4124 0.5830 0.2503
RNN 0.1216 0.4168 0.5912 0.2600
RLBL 0.1567 0.4840 0.6734 0.3140

TA-RLBL 0.1620 0.4906 0.6710 0.3183

long

FPMC 0.0964 0.3944 0.5741 0.2385
HRM 0.1007 0.4068 0.5824 0.2468
RNN 0.1239 0.4233 0.5918 0.2642
RLBL 0.1599 0.4916 0.6790 0.3178

TA-RLBL 0.1649 0.4985 0.6766 0.3227

(c) Performance on the Tmall dataset with dimensionality d = 8 and
window width n = 5.

length method recall@1 recall@5 recall@10 MAP

short

FPMC 0.0837 0.2330 0.3350 0.1807
HRM 0.0934 0.2588 0.3668 0.1990
RNN 0.1251 0.3363 0.4350 0.2401
RLBL 0.1566 0.3786 0.5494 0.2811

TA-RLBL 0.1381 0.4041 0.5432 0.2780

medium

FPMC 0.0872 0.2393 0.3412 0.1848
HRM 0.0971 0.2653 0.3734 0.2032
RNN 0.1282 0.3410 0.4396 0.2432
RLBL 0.1608 0.3841 0.5547 0.2850

TA-RLBL 0.1420 0.4102 0.5491 0.2818

long

FPMC 0.0859 0.2369 0.3387 0.1831
HRM 0.0957 0.2627 0.3703 0.2016
RNN 0.1303 0.3445 0.4433 0.2447
RLBL 0.1633 0.3879 0.5588 0.2876

TA-RLBL 0.1439 0.4143 0.5532 0.2842

Table 5. The computation time is measured in seconds. Here,
according to previous experimental results, the dimension-
ality is chosen to be d = 8. And the window width is n = 6,
n = 9 and n = 5 on Movielens, GTD and Tmall respectively.
Experiments are conducted on a computer with an 8 core 3.0
GHz CPU, 16 GB RAM, and a NVIDIA TITAN X GPU. From

TABLE 5
The computational time of RNN, RLBL and TA-RLBL in each iteration

during training on three datasets.

method Movielens GTD Tmall

RNN 902s 115s 335s
RLBL 1628s 196s 638s

TA-RLBL 1664s 210s 668s

results in Table 5, we can observe that all three methods
can be trained in an acceptable time. RLBL is a little faster
than TA-RLBL, indicating that time-specific transition is a
little more time consuming than position-specific transition.
Moreover, the computational time of RLBL and TA-RLBL
is less than twice of that of conventional RNN. This means
that, the significant performance improvement brought by
RLBL and TA-RLBL only requires no more than double
computational time.

Moreover, we illustrate the convergence curves of RLBL
and TA-RLBL in Figure 8 and 9 respectively. To illustrate
curves measured by different evaluation metrics in one
figure, we calculate normalized recall and MAP of RLBL
and TA-RLBL on three datasets. We normalize the values of
recall and MAP into [0, 1], and illustrate the corresponding
convergence curves. From the convergence curves, we can
observe that, both RLBL and TA-RLBL can achieve conver-
gence in a relatively small number of iterations. Moreover,
recall@1 values achieves convergence faster than recall@5
values, and recall@5 values achieve convergence faster than
recall@10 values. This may indicate that, the more items
generated in the ranking list, the more iterations are needed
during training.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed two novel multi-behavioral
sequential prediction methods, i.e. recurrent log-bilinear
model and time-aware recurrent log-bilinear model. We
build our model under a recurrent structure. RLBL mod-
els several elements in each hidden layer and incorporate
position-specific transition matrices. With such architecture,
RLBL can well model both short- and long-term contexts in
a historical sequence. Besides, to capture multiple types of
behavior in behavioral sequences, behavior-specific matrices
are designed and applied for each type of behavior. Then,
to incorporate time difference information in behavioral
sequences, we further extend the RLBL model and propose
a time-aware recurrent log-bilinear model with time-specific
transition matrices. Modeling time difference information,
TA-RLBL can further improves the performance of RLBL in
sequential prediction. The experimental results on three real
datasets show that both RLBL and TA-RLBL outperforms
state-of-the-art sequential prediction models.

In the future, we can further investigate the following
direction. In RLBL and TA-RLBL, transition matrices are the
same for different users, which does not confirm to practical
situations. So, we need to find a method to determine
different transition matrices for different users or different
user groups. Moreover, we didn’t take items’ features, e.g.,
categories, descriptions and images of items, into considera-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 v

al
ue

iterations

recall@1
recall@5
recall@10
MAP

(a) Movielens.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 v

al
ue

iterations

recall@1
recall@5
recall@10
MAP

(b) GTD.

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 v

al
ue

iterations

recall@1
recall@5
recall@10
MAP

(c) Tmall.

Fig. 8. Convergence curves of RLBL measured by normalized recall and MAP.

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 v

al
ue

iterations

recall@1
recall@5
recall@10
MAP

(a) Movielens.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 v

al
ue

iterations

recall@1
recall@5
recall@10
MAP

(b) GTD.

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 v

al
ue

iterations

recall@1
recall@5
recall@10
MAP

(c) Tmall.

Fig. 9. Convergence curves of TA-RLBL measured by normalized recall and MAP.

tion. Thus, incorporating RLBL and TA-RLBL with features
of items may also be our next step.

REFERENCES

[1] M. T. Bahadori, Q. R. Yu, and Y. Liu. Fast multivariate spatio-
temporal analysis via low rank tensor learning. In NIPS, pages
3491–3499, 2014.

[2] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural
probabilistic language model. JMLR, 3:1137–1155, 2003.

[3] P. G. Campos, F. Dı́ez, and I. Cantador. Time-aware recommender
systems: a comprehensive survey and analysis of existing evalu-
ation protocols. User Modeling and User-Adapted Interaction, 24(1-
2):67–119, 2014.

[4] J. Chen, C. Wang, and J. Wang. A personalized interest-forgetting
markov model for recommendations. In AAAI, pages 16–22, 2015.

[5] C. Cheng, H. Yang, M. R. Lyu, and I. King. Where you like to
go next: Successive point-of-interest recommendation. In IJCAI,
pages 2605–2611, 2013.

[6] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation. EMNLP, pages 1724–1734, 2014.

[7] Y. Ding and X. Li. Time weight collaborative filtering. In CIKM,
pages 485–492, 2005.

[8] Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural
network for skeleton based action recognition. In CVPR, pages
1110–1118, 2015.

[9] S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks
for long-term dependencies. In NIPS, pages 493–499, 1995.

[10] S. Feng, X. Li, Y. Zeng, G. Cong, Y. M. Chee, and Q. Yuan. Personal-
ized ranking metric embedding for next new poi recommendation.
In IJCAI, pages 2069–2075, 2015.

[11] K. Kapoor, K. Subbian, J. Srivastava, and P. Schrater. Just in time
recommendations: Modeling the dynamics of boredom in activity
streams. In WSDM, pages 233–242, 2015.

[12] R. Kiros, R. Zemel, and R. R. Salakhutdinov. A multiplicative
model for learning distributed text-based attribute representa-
tions. In NIPS, pages 2348–2356, 2014.

[13] Y. Koren. Collaborative filtering with temporal dynamics. Com-
munications of the ACM, 53(4):89–97, 2010.

[14] Y. Koren and R. Bell. Advances in collaborative filtering. In
Recommender Systems Handbook, pages 145–186. 2011.

[15] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques
for recommender systems. IEEE Computer, 42(8):30–37, 2009.

[16] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber. A clockwork
rnn. pages 1863–1871, 2014.

[17] N. Lathia, S. Hailes, and L. Capra. Temporal collaborative filtering
with adaptive neighbourhoods. In SIGIR, pages 796–797, 2009.

[18] N. N. Liu, M. Zhao, E. Xiang, and Q. Yang. Online evolutionary
collaborative filtering. In RecSys, pages 95–102, 2010.

[19] P. Liu, X. Qiu, X. Chen, S. Wu, and X. Huang. Multi-timescale long
short-term memory neural network for modelling sentences and
documents. In EMNLP, pages 2326–2335, 2015.

[20] Q. Liu, S. Wu, D. Wang, Z. Li, and L. Wang. Context-aware
sequential recommendation. In ICDM, pages 1053–1058, 2016.

[21] Q. Liu, S. Wu, L. Wang, and T. Tan. Predicting the next location:
A recurrent model with spatial and temporal contexts. In AAAI,
pages 194–200, 2016.

[22] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille. Deep
captioning with multimodal recurrent neural networks (m-rnn).
ICLR, 2015.

[23] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur.
Recurrent neural network based language model. In INTER-
SPEECH, volume 2, page 3, 2010.

[24] T. Mikolov, S. Kombrink, L. Burget, J. H. Cernocky, and S. Khu-
danpur. Extensions of recurrent neural network language model.
In ICASSP, pages 5528–5531, 2011.

[25] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cernocky.
Rnnlm-recurrent neural network language modeling toolkit. In
ASRU Workshop, pages 196–201, 2011.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[26] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
Distributed representations of words and phrases and their com-
positionality. In NIPS, pages 3111–3119, 2013.

[27] A. Mnih and G. Hinton. Three new graphical models for statistical
language modelling. In ICML, pages 641–648, 2007.

[28] A. Mnih and G. E. Hinton. A scalable hierarchical distributed
language model. In NIPS, pages 1081–1088, 2009.

[29] A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization.
In NIPS, pages 1257–1264, 2007.

[30] N. Natarajan, D. Shin, and I. S. Dhillon. Which app will you use
next?: Collaborative filtering with interactional context. In RecSys,
pages 201–208, 2013.

[31] S. Rendle. Factorization machines with libfm. ACM Transactions
on Intelligent Systems and Technology, 3(3):57, 2012.

[32] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In
UAI, pages 452–461, 2009.

[33] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing
personalized markov chains for next-basket recommendation. In
WWW, pages 811–820, 2010.

[34] S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme.
Fast context-aware recommendations with factorization machines.
In SIGIR, pages 635–644, 2011.

[35] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back-propagating errors. Cognitive Modeling,
5:3, 1988.

[36] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau.
Building end-to-end dialogue systems using generative hierarchi-
cal neural network models. In AAAI, pages 3776–3784, 2016.

[37] L. Shang, Z. Lu, and H. Li. Neural responding machine for short-
text conversation. ACL, pages 1577–1586, 2015.

[38] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In NIPS, pages 3104–3112, 2014.

[39] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A
neural image caption generator. In CVPR, pages 3156–3164, 2015.

[40] P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng. Learning hi-
erarchical representation model for next basket recommendation.
In SIGIR, pages 403–412, 2015.

[41] S. Wu, Q. Liu, P. Bai, L. Wang, and T. Tan. Sape: A system for
situation-aware public security evaluation. In AAAI, pages 4401–
4402, 2016.

[42] L. Xiong, X. Chen, T.-K. Huang, J. G. Schneider, and J. G. Car-
bonell. Temporal collaborative filtering with bayesian probabilistic
tensor factorization. In SDM, pages 211–222, 2010.

[43] Y. Yamashita and J. Tani. Emergence of functional hierarchy in
a multiple timescale neural network model: a humanoid robot
experiment. PLoS Computational Biology, 4(11):1–18, 2008.

[44] Q. Yang, J. Fan, J. Wang, and L. Zhou. Personalizing web page rec-
ommendation via collaborative filtering and topic-aware markov
model. In ICDM, pages 1145–1150, 2010.

[45] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan. A dynamic recurrent
basket recommendation model. In SIGIR, pages 729–732, 2016.

[46] Y. Zhang, H. Dai, C. Xu, J. Feng, T. Wang, J. Bian, B. Wang, and
T.-Y. Liu. Sequential click prediction for sponsored search with
recurrent neural networks. In AAAI, pages 1369–1376, 2014.

[47] Z. Zhao, Z. Cheng, L. Hong, and E. H. Chi. Improving user topic
interest profiles by behavior factorization. In WWW, pages 1406–
1416, 2015.

[48] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li.
Forecasting fine-grained air quality based on big data. In SIGKDD,
pages 2267–2276, 2015.

	1 Introduction
	2 Related Works
	2.1 Time-aware Neighborhood
	2.2 Time-aware Factorization Methods
	2.3 Markov Chain Based Methods
	2.4 Neural Network Based Methods

	3 Problem Definition
	4 Recurrent Log-bilinear Model (RLBL)
	4.1 Recurrent Neural Networks
	4.2 Log-bilinear Model
	4.3 Modeling Single Type of Behaviors
	4.4 Modeling Multiple Types of Behaviors

	5 Time-aware RLBL Model (TA-RLBL)
	5.1 Proposed Model
	5.2 Linear Interpolation for Learning Transition Matrices

	6 Parameter Learning
	6.1 Learning of RLBL
	6.2 Learning of TA-RLBL

	7 Experiments
	7.1 Experimental Settings
	7.2 RLBL VS. TA-RLBL
	7.3 Multiple Behaviors VS. Single Behavior
	7.4 Performance Comparison with Different Methods
	7.5 Comparison with Different Length of Behavioral History
	7.6 Analysis on Computational Time and Convergence

	8 Conclusions and Future Work
	References

