
Learning Latent Relations for Temporal Knowledge Graph Reasoning

Mengqi Zhang1,2 , Yuwei Xia3,4 , Qiang Liu1,2∗, Shu Wu1,2 , Liang Wang1,2

1School of Artificial Intelligence, University of Chinese Academy of Sciences
2Center for Research on Intelligent Perception and Computing (CRIPAC)

State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS)
Institute of Automation, Chinese Academy of Sciences

3Institute of Information Engineering, Chinese Academy of Sciences
4School of Cyber Security, University of Chinese Academy of Sciences

mengqi.zhang@cripac.ia.ac.cn,xiayuwei@iie.ac.cn,
{qiang.liu,shu.wu,wangliang}@nlpr.ia.ac.cn

Abstract

Temporal Knowledge Graph (TKG) reasoning
aims to predict future facts based on histori-
cal data. Due to the limitations of construction
tools and data sources, many important associa-
tions between entities may be omitted in TKG.
We refer to these missing associations as latent
relations. Most of the existing methods have
some drawbacks in explicitly capturing intra-
time latent relations between co-occurring en-
tities and inter-time latent relations between
entities that appear at different times. To tackle
these problems, we propose a novel Latent re-
lations Learning method for TKG reasoning,
namely L2TKG. Specifically, we first utilize
a Structural Encoder (SE) to obtain represen-
tations of entities at each timestamp. Then we
design a Latent Relations Learning (LRL) mod-
ule to mine and exploit the intra- and inter-time
latent relations. Finally, we extract the temporal
representations from the output of SE and LRL
for entity prediction. Extensive experiments on
four datasets demonstrate the effectiveness of
L2TKG.

1 Introduction

Temporal Knowledge Graph (TKG) is a type of
dynamic multi-relational graph data that is used to
record evolutionary knowledge in the real world.
Each fact in a TKG is represented by a quadru-
ple (s, r, o, t), such as (Obama, run for, president,
2012). Reasoning over TKG has two primary set-
tings: interpolation and extrapolation. Due to the
high practical values in event prediction (Deng
et al., 2020), question answer (Mavromatis et al.,
2022), and so on, reasoning over TKG under the
extrapolation setting has gained much attention in
recent years, which mainly aims at predicting facts
that occur at time t with t > tn for given a TKG
with history from t0 to tn.

Most extrapolation models mainly utilize the

(w
ithdraw

n)

(com
plain)

(go to)

(leave)

USA

Taliban Border Area President
Ghani

Pakistan

Afghan people

2021-05 2021-08

(Inter-time latent relation)

(In
tra

-ti
me

lat
en

t r
ela

tio
n) AfghanistanAfghanistan

Afghanistan

(w
ill be governed by)

?

2021-09

…

…

(has occupied)

Figure 1: An example of reasoning over TKG. Each
edge indicates the interaction between two entities. The
gray dotted lines indicate two types of latent relations

temporal and structural information available in the
TKG for reasoning. For example, RE-NET (Jin
et al., 2020a) and RE-GCN (Li et al., 2021) incor-
porate recurrent neural networks and graph neural
networks to capture the temporal and structural
dependencies of historical TKG sequences. More-
over, xERTE (Han et al., 2021a) and TITer (Sun
et al., 2021) develop sub-graph search and path
search strategies to predict target entities based on
existing TKG structures, respectively.

Although these methods achieve promising re-
sults in TKG reasoning, they still suffer from the
problem of missing associations in TKGs. Specif-
ically, the majority of TKG data is identified and
extracted automatically from a variety of news ar-
ticles, such as ICEWS data (Boschee et al., 2015).
Many crucial associations between entities may be
omitted from TKGs due to the limitations of con-
struction tools and data sources. We refer to such
missing associations as latent relations between en-
tities. Existing works are unable to explicitly mine
and utilize these latent relations, which are mainly
manifested in two aspects.

Firstly, existing methods fail to explicitly capture
intra-time latent relations between co-occurring

entities. In the TKG reasoning process, some con-
current entities may not be connected, but they
have a strong semantic correlation with each other.
As shown in Figure 1, although Afghanistan and
Taliban are not connected by any relations in the
TKG in May 2021, in fact Taliban negotiated with
Afghanistan at that time, which has a significant
impact on the situation in Afghanistan. Therefore,
it is essential to model the critical latent relations
between concurrent entities. Most of the existing
TKG reasoning models utilize Relational Graph
Neural Networks (RGNNs) (Schlichtkrull et al.,
2018; Li et al., 2021) to capture the semantic depen-
dencies between entities at each timestamp. How-
ever, RGNNs highly rely on existing edges or as-
sociations, which makes it challenging to model
critical semantic dependencies between some enti-
ties that are not directly connected.

Secondly, existing methods ignore the inter-time
latent relations between entities that appear at var-
ious timestamps. Some entities at different times-
tamps may have strong semantic dependencies,
which can provide crucial auxiliary information for
TKG reasoning. Consequently, the associations be-
tween these entities must also be considered. Take
Figure 1 as an example: the effect of the USA in
May 2003 on Afghanistan in August 2021 is sig-
nificant, but these two distinct entities cannot be
directly related in TKG because they appear at dif-
ferent times. The existing TKG reasoning models
focus on modeling the semantic dependencies of
the same entities at different times, but are inade-
quate for the aforementioned entities at different
times.

To deal with the aforementioned challenges, we
propose a novel Latent relations Learning method
for TKG reasoning, L2TKG for brevity. The over-
all framework of L2TKG is presented in Figure 2.
Specifically, we first utilize a Structural Encoder
(SE) to generate the representations of entities at
each timestamp. Inspired by graph structural learn-
ing (Jin et al., 2020b; Zhu et al., 2021b; Liu et al.,
2022), we design a Latent Relations Learning mod-
ule (LRL) for learning the two types of missing
associations in TKG reasoning. Based on the em-
bedding of entities at each timestamp, LRL is able
to establish new important associations between un-
connected entities in a learnable manner, and then
encode the learned latent relational graph to obtain
more comprehensive representations of entities. Fi-
nally, we extract temporal representations from the

output of SE and LRL for the entity prediction task.
In summary, our work makes the following main

contributions:

• We highlight and explore the necessity of cap-
turing critical missing associations in TKG
reasoning.

• We introduce graph structure learning into
TKG reasoning, and propose a novel and ef-
fective latent relations learning method to al-
leviate the problem of missing associations in
TKG reasoning.

• We conduct extensive experiments on four typ-
ical TKG datasets, which demonstrate the ef-
fectiveness of our proposed model.

2 Related Work

In this paper, we illustrate the related work about
TKG reasoning under the extrapolation setting and
graph structure learning.

2.1 TKG Reasoning under the Extrapolation
Setting

TKG reasoning under the extrapolation setting aims
to predict new facts in future timestamps based on
historical TKG sequence.

Specifically, GHNN (Han et al., 2020) and
Know-Evolve (Trivedi et al., 2017) use temporal
point process (TTP) to model the TKG data for
capturing the continuous-time temporal dynamics,
and they predict the future facts by estimating the
conditional probability of TTP. CyGNet (Zhu et al.,
2021a) proposes a copy-generation mechanism that
utilizes repeating patterns in historical facts to pre-
dict the future, but ignores the high-order relation-
ships between entities and relations.

Some recent methods (Jin et al., 2020a; Li et al.,
2021, 2022) combine graph neural networks and
recurrent neural networks to model the semantic
and time dependencies between entities. For exam-
ple, RE-NET (Jin et al., 2020a) incorporates RNNs
and RGCNs to capture the temporal and structural
dependencies from sequences of entities to be pre-
dicted. Different from RE-NET, RE-GCN (Li et al.,
2021) takes more adjacent structural dependencies
of entities and relations into consideration and in-
troduces some static properties of entities. To con-
sider more global temporal information, TiRCN
(Li et al., 2022) designs a global history encoder
network collecting repeated historical facts. To

further capture fine-grained temporal information,
TANGO (Han et al., 2021b) also adopts Neural Or-
dinary Differential Equations to the TKG reasoning
for forecasting future links. Besides, some works
(Han et al., 2021a; Sun et al., 2021) also propose
sub-graph or path search strategies for TKG reason-
ing. xERTE (Han et al., 2021a) designs an explain-
able model for entity prediction, which provides a
sub-graph search strategy to find answer entities.
TITer (Sun et al., 2021) performs path search based
on reinforcement learning to predict future entities,
which includes a times-shaped reward based on
Dirichlet distribution to guide the model training.
Recently, CENET (Xu et al., 2023) combines the
contrastive learning strategy with TKG models to
identify significant entities from historical and non-
historical dependency. However, all of these above
methods rely on existing associations between enti-
ties or structures in TKG and ignore the utilization
of important latent associations between entities.

2.2 Graph Structure Learning

Owing to the capability of dealing with graph struc-
ture data, Graph Neural Networks (GNNs) have
been widely utilized and achieved promising perfor-
mance in many tasks, such as Recommender Sys-
tem (Wu et al., 2019; Chen and Wong, 2020; Zhang
et al., 2021) and Text Classification (Yao et al.,
2019; Zhang et al., 2020). Recently, researchers
have proposed that graph data may contain noises
that may deteriorate the training of GNNs (Jin et al.,
2020c). To deal with this problem, graph structure
learning (GSL) is proposed, aiming to learn an op-
timized graph structure and node representations
jointly.

There are three main categories of GSL models
(Zhu et al., 2021b): metric-learning-based meth-
ods (Jiang et al., 2019; Chen et al., 2020; Cosmo
et al., 2020; Li et al., 2018b), probabilistic methods
(Franceschi et al., 2018, 2019; Zhang et al., 2019),
and direct-optimized methods (Yang et al., 2019;
Jin et al., 2020c). For example, IDGL (Chen et al.,
2020) cast the graph learning problem as a similar-
ity metric learning problem and leverages adaptive
graph regularization for controlling the quality of
the learned graph. DGM (Kazi et al., 2023) in-
troduces a learnable Differentiable Graph Module
that predicts edge probabilities in the graph. Neu-
ralSparse (Chen et al., 2020) proposes a supervised
graph sparsification technique that improves gener-
alization power by learning to remove potentially

task-irrelevant edges from input graphs.
In contrast to the above-mentioned work to opti-

mize the existing graph structure, our work mainly
uses a metric-learning-based approach to discover
new and important missing associations in TKG
and to obtain optimal entity representations for
TKG reasoning.

3 Preliminaries

In this section, we introduce the definition of TKG,
formulate the task of TKG reasoning, and explain
some notations used in this paper.

Definition 1 (Temporal Knowledge Graph). Let
E and R represent a set of entities and relations.
A quadruple qt = (es, r, eo, t) represents a relation
r ∈ R that occurs between subject entity es ∈ E
and object entity eo ∈ E at time t. All quadruple
occurring at time t constitute a knowledge graph
Gt. ets ∈ Gt indicates that entity es occurs at time t.
A temporal knowledge graph (TKG) G is defined
as a sequence of knowledge graphs with different
timestamps, i.e., G = {G1,G2, · · · ,Gt}.

Definition 2 (Temporal Knowledge Graph Rea-
soning). We mainly focus on the entity prediction
task for TKG reasoning in the paper. The entity
prediction task aims to predict the missing object
entity of (es, r, ?, t+ 1) or the missing subject en-
tity of (?, r, eo, t+1) given historical KG sequence
{G1,G2, · · · ,Gt}.

Let vector xs ∈ Rd and xr ∈ Rd represent static
embedding of entity es and relation r, where d
is the dimension. The general paradigm of TKG
reasoning is to learn future representations of each
entity for predicting Gt+1 by using the historical
KG sequences {Gi}ti=0, static entity and relation
embeddings xs and xr.

4 Methodology

In this section, we present the proposed L2TKG.
The overall framework of L2TKG is illustrated in
Figure 2. There are three main components: (1)
Structural Encoder (SE), which captures the se-
mantic dependencies between concurrent entities
at each timestamp based on the existing TKG struc-
ture. (2) Latent Relations Learning (LRL), which
mines and exploits the critical intra-time and inter-
time latent relations between entities. (3) Temporal
Representation Learning, which extracts temporal
representation for each entity from the output of
SE and LRL.

StructuralEncoder

G
R
U

G
R
U G
ating

Integration

R
elationalG

AT
Similarity Matrix Latent Relational Graph

Latent Relations Learning

Tem
poralR

epresentation

Intra-time latent relation

0.5

0.3

0.8

00.4

0

0

…

TKG

?

…

𝑡!

𝑡"

𝑡#
Inter-time latent relation

Figure 2: An illustration of L2TKG model architecture. We first utilize a Structural Encoder (§4.1) to obtain
representations of entities at each timestamp. Then, the well-designed Latent Relations Learning (§4.2) module
sequentially calculates the similarity matrix, and constructs and encodes a latent relational graph to obtain a
comprehensive representation of each entity. Finally, we extract the temporal representations from the output of SE
and LRL for the entity prediction task (§4.3).

4.1 Structural Encoder

At each timestamp, connected co-occurring enti-
ties have strong semantic dependencies. To capture
these semantic dependencies, we propose a struc-
tural encoder based on relational graph convolution
neural network (Schlichtkrull et al., 2018; Li et al.,
2021), which aims to obtain the embedding of each
entity at the timestamp of its appearance.

Formally, the structural encoder can be defined
as follows:

hl+1
s,ti

= f

 ∑
eo∈N

ti
es

W1

(
hl
o,ti + xr

)
+W2h

l
s,ti


where N ti

es is the set of neighbors of es in Gti , f(·)
is the ReLU function, W1 and W2 ∈ Rd×d are
trainable weight parameter matrices in each layer,
and the initial entity embedding h0

s,ti and h0
o,ti are

set to static embedding xs and xo. After ω-layer
convolution, we can obtain entity representation
hω
s,ti at time ti. We omit the superscript ω and use

hs,ti to denote the embedding of es at time ti.

4.2 Latent Relations Learning

After capturing the existing entity semantic depen-
dencies among concurrent entities at each times-
tamp, we then design a latent relations learning
module to discover and exploit important missing
associations: intra-time latent relation and inter-
time latent relation, between historical entities.

4.2.1 Learning latent relational graph

The purpose of this part is to mine latent relations
between entities appearing in TKG sequence G =
{Gt−L, · · · ,Gt}. The same entity that appears at
different times is treated as two separate entities,
such as etis and e

tj
s . Thus, the number of entities to

be considered in this module is N =
∑t

ti=t−L ntk ,
where ntk is the number of entities in Gtk and L is
the history sequence length.

Without loss of generality, we assume that the
highly associated entities are also similar in the
embedding space. As a result, we first compute the
similarity between entity embeddings. There are
many similarity metrics that can be chosen. We use
simple cosine metrics to compute the similarity:

d(x,y) =
(W3x)

T (W4y)

∥W3x∥∥W4y∥
, (1)

where ·T represents transposition, W3 and W4

∈ Rd×d are learnable weight parameters.
To reduce the complexity of calculations, we

only calculate the similarity between entity pairs
that have not connected in the TKG sequence. Next,
we will introduce in detail how to obtain the crucial
intra-time and inter-time latent relations, respec-
tively.
Intra-time latent relation learning. We calculate
the similarity between any two entity representa-
tions appearing at the same timestep tp but not
becoming connected. The similarity matrix Stp

∈ Rntp×ntp between unconnected entities at time

tp is computed by

S
tp
i,j = d(hei,tp ,hej ,tp), (2)

where (ei, ej) ∈ Gtp and {(ei, r, ej , tp)|∀r} /∈ Gtp .
For other case, the value of Stp

i,j is set to 0.
To retain important latent relations and reduce

noise interference, we use the sparse operation
based on k-NN (Chen et al., 2009) for each ma-
trix Stp , that is: for each entity, we only keep latent
relations with the top-k scores. In this way, the
final similarity matrix at time tp is calculated as:

Ŝ
tp
i,j =

{
S
tp
i,j , S

tp
i,j ∈ top-k(S

tp
i,:)

0, otherwise
, (3)

where S
tp
i,: denotes the i-row of Stp . Each Ŝtp

records the important intra-time latent relations
between entities at time tk.
Inter-time latent relation learning. We calculate
the similarity between any two entity representa-
tions appearing at different timesteps tp and tq.

Q
tp,tq
i,j = d(hei,tp ,hej ,tq), (4)

where ei ∈ Gtp , ej ∈ Gtq , tp ̸= tq. For other cases,
the value of Qtp,tq is 0. Similar to intra-time latent
relation learning, we also perform sparsification on
the similarity matrix:

Q̂
tp,tq
i,j =

{
Q

tp,tq
i,j , Qi,j ∈ top-k(Q

tp,tq
i,:)

0, otherwise
. (5)

Each Q̂tp,tq records the important inter-time latent
relation between entities at different times.

We choose k values independently for the sparse
operations of the two latent relations learning, de-
noted as k1 and k2, respectively. Based on the
learned similarity matrices, we then build a latent
relational graph P . In specific, if Ŝ

tp
i,j > 0, we

construct intra-time latent relation between e
tp
i and

e
tp
j in P . Similarly, if Q̂tp,tq

i,j > 0, we construct

inter-time latent relation between e
tp
i and e

tq
j . We

only consider latent relations and omit original rela-
tions of the TKG sequence in the graph P . Similar
to existing relations, we also transform the two
types of latent relations into low-dimensional em-
bedding vectors, which are learnable parameters.
To facilitate presentation, we directly use numeri-
cal numbers {1, ..., N} to denote the nodes in P in
the next section.

4.2.2 Encoding latent relational graph
After obtaining the latent relational graph P , we
perform message propagation and aggregation op-
erations on it to capture the semantic dependencies
of entities under the newly learned associations.

In specific, we first utilize a graph attention
mechanism (Lv et al., 2021) to calculate the co-
efficient between two adjacent nodes i and j under
the learned latent relation r in P:

αij =
exp

(
f
(
aTW3

[
zli ∥ zlj ∥ zijr

]))
∑

k∈Ni
exp

(
f
(
aTW3

[
zli ∥ zlk ∥ zikr

])) ,
where initial embedding z

(0)
i is the corresponding

entity embedding obtained by Structural Encoder
(§4.1), zijr is the embedding of latent relation be-
tween node i and node j, Ni is the set of neighbors
of i in P , a ∈ R3d and W5 ∈ R3d×3d are learn-
able weight parameters in each layer, f(·) is the
LeakyReLU activation function, and ∥ is the con-
catenation operation.

After that, we obtain a more comprehensive rep-
resentation for each entity by aggregating the em-
beddings from its neighbors in the latent relational
graph,

zl+1
i = g

∑
k∈Ni

αijW6

(
zlk + zikr

)
+W7z

l
i

 ,

where g(·) is the ReLU activation function, W6

and W7 are weight parameter matrices in each
layer. For simplicity, we use zi to represent zβi
after β-layer operation.

4.3 Temporal Representations Learning
In addition to the semantic dependencies under dif-
ferent relations, the temporal patterns of entities are
also crucial for TKG reasoning. This section dis-
cusses how to obtain the temporal representations
of entities based on the output of SE and LRL.

4.3.1 Global temporal representation
Since the LRL module captures the semantic de-
pendencies of the entity under the new associations,
its output contains more global information. We
further input them into GRU to get the global tem-
poral representation of each entity:

eGs,t+1 = GRUG

(
eGs,t, zs,t

)
, (6)

where zs,t corresponds to the output representation
of LRL (§4.2) at entity ets.

4.3.2 Local temporal representation

Local temporal representation reflects the semantic
changes of entities in recent times. Following (Li
et al., 2021, 2022), we adopt GRU to encode the
most recent m timestamps of each entity based on
the output of the structural encoder:

eLs,t+1 = GRUL

(
eLs,t,hs,t

)
, (7)

where hs,t is the corresponding entity embedding
obtained by Structural Encoder (§4.1).

4.3.3 Gating Integration

To facilitate model reasoning, we adopt a learnable
gating function (Hu et al., 2021) to adaptively inte-
grate the global and local temporal representations
into a unified temporal representation. Formally,

es,t+1 = σ(ge)⊙ eGs,t+1 + (1− σ(ge))⊙ eLs,t+1,

where ge ∈ Rd is a gate vector parameter to trade-
off two types of temporal information of each entity
e, σ(·) is to constrain the value of each element in
[0, 1], and ⊙ denotes element-wise multiplication.

4.4 Parameter Learning

In this section, we describe how to get the score for
each quadruple (es, r, eo, t + 1) and the learning
objective for training our model.

We first calculate the probability of interaction
between entity es and eo under the relation r at
time t+ 1. Formally,

pt+1(o|s, r) = σ (eo,t+1 f (es,t+1,xr)) ,

where f(·) is decoder function ConvTransE (Li
et al., 2021), es,t+1 and eo,t+1 are temporal repre-
sentations that contain both global- and local tem-
poral information.

The learning tasks can be defined as,

Le = −
T∑
t=0

∑
(es,r,eo,t+1)∈Gt+1

log pt+1(o|s, r).

Thus, the objective function is as follows:

L = Le + λ1∥Θ∥2,

where ∥ · ∥2 is L2 norm and λ1 is to control regu-
larization strength.

5 Experiments

In this section, we perform experiments on four
TKG datasets to evaluate our model. We aim to an-
swer the following questions through experiments.

• Q1: How does L2TKG perform compared
with state-of-the-art TKG reasoning methods
on the entity prediction task?

• Q2: How does L2TKG perform in learning
missing associations?

• Q3: How do different components affect the
L2TKG performance?

• Q4: How sensitive is L2TKG with different
hyper-parameter settings?

5.1 Experimental Setup
5.1.1 Datasets
We evaluate our L2TKG on four representative
TKG datasets in our experiments: ICEWS14
(García-Durán et al., 2018), ICEWS18 (Jin et al.,
2020a), ICEWS05-15 (García-Durán et al., 2018),
and GDELT (Jin et al., 2020a). The first three
datasets are from the Integrated Crisis Early Warn-
ing System (Boschee et al., 2015) and record the
facts in 2014, 2018, and the facts from 2005 to
2015, respectively. The last one is from the Global
Database of Events, Language, and Tone (Leetaru
and Schrodt, 2013). The details of data split strat-
egy and data statistics are shown in Appendix A.

5.1.2 Baselines
We compare L2TKG with static KG (SKG) reason-
ing models: DisMult (Yang et al., 2015),ComplEx
(Trouillon et al., 2016), R-GCN (Schlichtkrull et al.,
2018), ConvE (Dettmers et al., 2018), and RotatE
(Sun et al., 2019), and TKG models: CyGNet (Zhu
et al., 2021a), RE-NET (Jin et al., 2020a), xERTE
(Han et al., 2021a), TIEer (Sun et al., 2021), RE-
GCN (Li et al., 2021), TiRCN (Li et al., 2022), and
CENET (Xu et al., 2023). We provide implementa-
tion details of baselines and L2TKG in Appendix
B and C, respectively.

5.1.3 Evaluation Metrics
We adopt widely-used metrics (Jin et al., 2020a;
Li et al., 2021), MRR and Hits@{1, 10} to eval-
uate the model performance in the experiments.
For a fair comparison, we follow the setup of Li
et al. (2022), using the ground truth history during
multi-step inference, and report the experimental

0.0 0.2 0.4 0.6 0.8
mask rate

27

36

45

Ours
TiRCN
RE-GCN

(a) ICEWS14

0.0 0.2 0.4 0.6 0.8
mask rate

36

45

54

Ours
TiRCN
RE-GCN

(b) ICEWS05-15

0.0 0.2 0.4 0.6 0.8
mask rate

20

25

30

Ours
TiRCN
RE-GCN

(c) ICEWS18

0.0 0.2 0.4 0.6 0.8
mask rate

14

18

22

Ours
TiRCN
RE-GCN

(d) GDELT

Figure 3: Performance of L2TKG, TiRCN, and RE-
GCN under different mask rates in terms of MRR (%).

results under the time-aware filtered setting for all
compared models.

5.2 Performance Comparison (RQ1)

The performances on entity prediction task of all
models are shown in Table 1. From the results we
have some following observations:
L2TKG achieves the best performance on all

ICEWS datasets with most evaluation metrics,
which verifies the effectiveness of our model.
Specifically, L2TKG significantly outperforms all
compared static models, demonstrating the impor-
tance of modeling temporal information in TKG
reasoning. Our model is better than RE-GCN and
TiRCN. The reason might be that RE-GCN only
utilizes the most recent historical sequence of TKG
and neglects the global historical information of the
entities. Although TiRCN considers more histori-
cal dependencies than RE-GCN, it only utilizes the
first-order repetitive patterns of global history. Our
L2TKG not only encodes some recent information
but also exploits more learned latent relations be-
tween historical entities, allowing it to make better
use of global historical data than TiRCN. Com-
pared with L2TKG and TiRCN, both the RE-NET
and CyGNET ignore the use of local temporal in-
formation about entities and thus perform less well
than most TKG models. Different from our model,
xERTE and TITer predict the target entity with
sub-graph-based search and path-based search, re-

0.0 0.2 0.4 0.6 0.8
mask rate

15

30

45 Over TiRCN
Over RE-GCN

(a) ICEWS14

0.0 0.2 0.4 0.6 0.8
mask rate

20

40

60 Over TiRCN
Over RE-GCN

(b) ICEWS05-15

0.0 0.2 0.4 0.6 0.8
mask rate

8

16

24 Over TiRCN
Over RE-GCN

(c) ICEWS18

0.0 0.2 0.4 0.6 0.8
mask rate

0

13
Over TiRCN
Over RE-GCN

(d) GDELT

Figure 4: The relative improvements (%) of L2TKG
over TiRCN and RE-GCN under different mask rates.

spectively, but their search methods rely on existing
paths, which limits their search scope and impairs
their performance.

Compared with the ICEWS data, the GDELT
data has a higher number of facts appearing at each
time, and the problem of missing association is
less severe, so our model has limited improvement
compared to SOTA models.

5.3 Performance Comparison in Learning
Missing Associations (RQ2)

To further verify the ability of L2TKG to mine and
exploit the latent relations, we execute L2TKG on
datasets with varying degrees of missing associa-
tions. On the ICEWS and GDELT datasets, we
mask off {0.1, ..., 0.9} of the existing relations in
the KG of each timestamp, respectively. We show
the performance of RE-GCN, TiRCN, and L2TKG
under different mask ratios in Figure 3, and the
relative improvements of L2TKG over RE-GCN
and TiRCN in Figure 4. From the results, we have
the following observations:

From Figure 3 we find that the performance of
all models decreases to different degrees as the
mask rate increases, which is due to the gradual
decrease of historical association information in
the dataset. Nevertheless, our model performance
degrades relatively flat and maintains good perfor-
mance in the case of severe missing association
information (mask rate > 0.6). In Figure 4, the rel-

Model
ICEWS14 ICEWS05-15 ICEWS18 GDELT

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

DisMult 25.31 17.93 42.22 17.43 10.08 30.12 16.59 10.01 31.69 15.64 9.37 29.01
ComplEx 32.33 23.21 52.37 23.14 14.56 41.63 18.84 11.41 25.78 12.23 8.30 20.36

RGCN 28.14 19.43 46.02 27.43 20.15 44.62 18.04 8.57 35.68 10.93 4.59 22.38
ConvE 30.93 21.74 50.18 25.25 16.07 44.34 24.28 15.61 44.59 17.28 10.34 30.63
RotatE 27.53 18.60 47.62 19.39 10.19 38.57 15.35 7.10 33.09 5.48 1.96 13.76

CyGNet 37.65 27.43 57.90 40.42 29.44 61.60 27.12 17.21 46.85 20.22 12.35 35.82
RE-NET 39.86 30.11 58.21 43.67 33.55 62.72 29.78 19.73 48.46 19.55 12.38 34.00
xERTE 40.79 32.70 57.30 46.62 37.84 63.92 29.31 21.03 46.48 19.45 11.92 34.18
TITer 41.73 32.74 58.44 47.60 38.29 64.86 29.98 22.05 44.83 18.19 11.52 31.00

RE-GCN* 41.99 32.93 61.92 47.39 37.65 68.56 30.13 19.11 48.86 19.13 11.54 32.35
CENET 41.30 32.58 58.22 47.13 37.25 67.61 29.65 19.98 48.23 19.73 12.04 34.98
TiRGN* 43.18 33.12 62.24 48.83 38.62 69.20 32.22 22.24 51.88 21.67 13.63 37.60

L2TKG 47.40 35.36 71.05 57.43 41.86 80.69 33.36 22.15 55.04 20.53 13.67 37.79
∆Improve. 9.77% 6.73% 14.15% 17.61% 8.39% 16.60% 3.54% – 6.09% – 0.29% 0.51%

Table 1: Performance comparison on four datasets in terms of MRR (%), Hit@1 (%), and Hit@10 (%) (time-aware
metrics). The best performance is highlighted in boldface, and the second-best is underlined. * indicates that we
remove the static information from the model to ensure the fairness of comparisons between all baselines.

ative performance improvement of our model com-
pared to RE-GCN and TiRCN gradually increases.
In particular, the model performance improves sub-
stantially when the mask rate exceeds 0.6. These
findings all indicate that our latent relations learn-
ing method can effectively mine and exploit the
missing associations between entities and alleviate
the problem of missing associations in history.

5.4 Ablation Studies (RQ3)
To investigate the superiority of each component
in our model, we compare L2TKG with different
variants in terms of MRR. Specifically, we modify
L2TKG by removing the latent relation learning
module (w/o LRL), intra-time relation learning of
LRL (w/o LRL-Intra), inter-time relation learning
of LRL (w/o LRL-Inter), local temporal represen-
tation module (w/o Ltr), global temporal represen-
tation module (w/o Gtr), and structural encoder
(w/o SE), respectively. We show their results in
Table 2 and have the following findings:

L2TKG significantly outperforms L2TKG (w/o
LRL) on all datasets, which confirms that our la-
tent relations learning module effectively discovers
and utilizes missing important associations in TKG
sequence to assist prediction tasks. L2TKG (w/o
LRL-Intra) and L2TKG (w/o LRL-Inter) also
achieves better performance than L2TKG (w/o
LRL). The improvements verify that both learned
inter-time and intra-time latent relations contribute
to model performance. Compared with L2TKG
(w/o LRL-Intra) and (w/o LRL-Inter), the per-
formance of L2TKG is further improved, which

Model ICEWS14 ICEWS05-15 ICEWS18 GDELT

w/o LRL 38.32 44.49 28.74 19.46
w/o LRL-Intra 47.08 55.84 33.05 20.36
w/o LRL-Inter 47.00 56.30 33.30 20.41

w/o Ltr 36.40 43.00 32.15 19.03
w/o Gtr 40.64 49.27 29.61 20.24

w/o SE 44.34 47.01 31.18 19.78
L2TKG 47.40 57.43 33.36 20.53

Table 2: Ablation studies on datasets in terms of MRR
(%) with time-aware metrics.

means that two latent relations play different roles
in promoting the prediction of the model, and it is
necessary to use both latent relations together.

L2TKG also obtains significant improvements
over L2TKG (w/o Ltr) and L2TKG (w/o Gtr),
indicating that both global- and local-temporal in-
formation can effectively enhance the performance
on the prediction task. The improvement between
L2TKG and L2TKG (w/o SE) verifies the im-
portance of capturing the semantic dependencies
among co-occurring at each timestamp.

5.5 Sensitivity Analysis (RQ4)

The structural encoder (SE) and latent relation
learning (LRL) are two vital modules in our model.
To further investigate their effects, we study how
the k values of sparse operations (Intra-time and
Inter-time learning) and the layer numbers of SE
and LRL affect the performance of L2TKG. The
results and analyses are shown in Appendix D.

6 Conclusion

In this paper, we have proposed a novel method
L2TKG for reasoning over TKG. We first obtain
the embedding of each historical entity based on
the structural encoder. Then, a well-designed latent
relations learning module is proposed to mine and
encode the two types of latent relations, obtaining
comprehensive entity embeddings. Finally, we ex-
tract temporal representations of entities from the
outputs of LRL and SE for final prediction. Experi-
mental results on four benchmarks and extensive
analysis demonstrate the effectiveness and superi-
ority of L2TKG in TKG reasoning.

Limitations

In this section, we talk about the limitations of our
model. Specifically, selecting k values in the LRL
module requires human involvement. Different
types of data or entities may depend on different k
values. Although most k values within a reasonable
range result in model performance gains, finding
the optimal value through human involvement in
the selection alone is difficult. In the future, we will
study the automatic optimization of the k values to
further improve the model’s ability to learn latent
relations.

References
Elizabeth Boschee, Jennifer Lautenschlager, Sean

O’Brien, Steve Shellman, James Starz, and Michael
Ward. 2015. ICEWS Coded Event Data.

Jie Chen, Haw-ren Fang, and Yousef Saad. 2009. Fast
approximate knn graph construction for high dimen-
sional data via recursive lanczos bisection. Journal
of Machine Learning Research, 10(9).

Tianwen Chen and Raymond Chi-Wing Wong. 2020.
Handling information loss of graph neural networks
for session-based recommendation. KDD.

Yu Chen, Lingfei Wu, and Mohammed Zaki. 2020. Iter-
ative deep graph learning for graph neural networks:
Better and robust node embeddings. In NIPS, pages
19314–19326.

Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nas-
sir Navab, and Michael M. Bronstein. 2020. Latent
patient network learning for automatic diagnosis.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning.
2020. Dynamic knowledge graph based multi-event
forecasting. In KDD, pages 1585–1595.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In AAAI, pages 1811–1818.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Ric-
cardo Grazzi, and Massimiliano Pontil. 2018. Bilevel
programming for hyperparameter optimization and
meta-learning. In ICML, pages 1568–1577.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil,
and Xiao He. 2019. Learning discrete structures for
graph neural networks. In ICML, pages 1972–1982.

A García-Durán, Sebastijan Dumani, and M. Niepert.
2018. Learning sequence encoders for temporal
knowledge graph completion. In EMNLP, pages
4816–4821.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.
2021a. Explainable subgraph reasoning for forecast-
ing on temporal knowledge graphs. In ICLR.

Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and
Volker Tresp. 2021b. Learning neural ordinary equa-
tions for forecasting future links on temporal knowl-
edge graphs. In EMNLP, pages 8352–8364.

Zhen Han, Yunpu Ma, Yuyi Wang, Stephan Günnemann,
and Volker Tresp. 2020. Graph hawkes neural net-
work for forecasting on temporal knowledge graphs.
In AKBC.

Linmei Hu, Tianchi Yang, Luhao Zhang, Wanjun Zhong,
Duyu Tang, Chuan Shi, Nan Duan, and Ming Zhou.
2021. Compare to the knowledge: Graph neural fake
news detection with external knowledge. In ACL,
pages 754–763.

Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and
Bin Luo. 2019. Semi-supervised learning with graph
learning-convolutional networks. In CVPR, pages
11305–11312.

W. Jin, M. Qu, X. Jin, and X. Ren. 2020a. Recur-
rent event network: Autoregressive structure infer-
enceover temporal knowledge graphs. In EMNLP,
pages 6669–6683.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang
Wang, and Jiliang Tang. 2020b. Graph structure
learning for robust graph neural networks. In KDD,
pages 66–74.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang
Wang, and Jiliang Tang. 2020c. Graph structure
learning for robust graph neural networks. KDD.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nas-
sir Navab, and Michael M. Bronstein. 2023. Differ-
entiable graph module (dgm) for graph convolutional
networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(2):1606–1617.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In ICLR.

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt:
Global data on events, location, and tone, 1979–2012.
In ISA annual convention, volume 2, pages 1–49.
Citeseer.

https://doi.org/10.1109/TPAMI.2022.3170249
https://doi.org/10.1109/TPAMI.2022.3170249
https://doi.org/10.1109/TPAMI.2022.3170249

Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018a.
Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou
Huang. 2018b. Adaptive graph convolutional neural
networks. In AAAI.

Yujia Li, Shiliang Sun, and Jing Zhao. 2022. Tirgn:
Time-guided recurrent graph network with local-
global historical patterns for temporal knowledge
graph reasoning. In IJCAI, pages 2152–2158.

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng
Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi
Cheng. 2021. Temporal knowledge graph reason-
ing based on evolutional representation learning. In
SIGIR, pages 408–417.

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen,
Hao Peng, and Shirui Pan. 2022. Towards unsuper-
vised deep graph structure learning. In WWW, pages
1392–1403.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen,
Wenzheng Feng, Siming He, Chang Zhou, Jianguo
Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we
really making much progress? revisiting, bench-
marking and refining heterogeneous graph neural
networks. In KDD, page 1150–1160.

Costas Mavromatis, Prasanna Lakkur Subramanyam,
Vassilis N Ioannidis, Adesoji Adeshina, Phillip R
Howard, Tetiana Grinberg, Nagib Hakim, and George
Karypis. 2022. Tempoqr: temporal question reason-
ing over knowledge graphs. In AAAI, volume 36,
pages 5825–5833.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In NeurIPS, pages 8024–8035.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In ESWC, pages 593–607.

Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, and
Kun He. 2021. TimeTraveler: Reinforcement learn-
ing for temporal knowledge graph forecasting. In
EMNLP, pages 8306–8319.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding by
relational rotation in complex space. In ICLR.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and
Le Song. 2017. Know-evolve: Deep temporal reason-
ing for dynamic knowledge graphs. In ICML, pages
3462–3471.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML,
pages 2071–2080.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai,
Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao
Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin
Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and
Zheng Zhang. 2019. Deep graph library: Towards
efficient and scalable deep learning on graphs. ICLR
Workshop on Representation Learning on Graphs
and Manifolds.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing
Xie, and Tieniu Tan. 2019. Session-based recommen-
dation with graph neural networks. In AAAI.

Yi Xu, Junjie Ou, Hui Xu, and Luoyi Fu. 2023. Tem-
poral knowledge graph reasoning with historical con-
trastive learning. In AAAI.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In
ICLR.

Liang Yang, Zesheng Kang, Xiaochun Cao, Di Jin,
Bo Yang, and Yuanfang Guo. 2019. Topology op-
timization based graph convolutional network. In
IJCAI.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
AAAI, 33(01):7370–7377.

Jinghao Zhang, Yanqiao Zhu, Qiang Liu, Shu Wu,
Shuhui Wang, and Liang Wang. 2021. Mining latent
structures for multimedia recommendation. ACM
MM.

Yingxue Zhang, Soumyasundar Pal, Mark J. Coates, and
Deniz Üstebay. 2019. Bayesian graph convolutional
neural networks for semi-supervised classification.
In AAAI.

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen
Wen, and Liang Wang. 2020. Every document owns
its structure: Inductive text classification via graph
neural networks. ACL.

Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan
Cheng, and Yan Zhang. 2021a. Learning from his-
tory: Modeling temporal knowledge graphs with se-
quential copy-generation networks. In AAAI, pages
4732–4740.

Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu,
Shu Wu, and Liang Wang. 2021b. Deep graph struc-
ture learning for robust representations: A survey.
arXiv preprint arXiv:2103.03036.

A Dataset

We divide ICEWS14, ICEWS18, ICEWS05-15,
and GDELT into training, validation, and test sets
with a proportion of 80%, 10%, and 10% by times-
tamps following (Li et al., 2021). The statistics of
four TKG datasets are summarized in Table 3.

B Baselines

The static KG reasoning models compared with our
work are shown as follows:

DisMult (Yang et al., 2015), a model that pro-
poses a simplified bilinear formulation to capture
relational semantics.

ComplEx (Trouillon et al., 2016), a model that
converts the embedding into complex vector space
to handle symmetric and antisymmetric relations.

R-GCN (Schlichtkrull et al., 2018), a graph neu-
ral network that handles the highly multi-relational
graph data.

ConvE (Dettmers et al., 2018), a model that
adopts a 2D convolutional neural network to model
the interactions between entities and relations.

RotatE (Sun et al., 2019), a model that defines
each relation as a rotation from the subject entity
to object entity in the complex vector space.

TKG reasoning models compared to L2TKG
include:

CyGNet1 (Zhu et al., 2021a), a model that uti-
lizes recurrence patterns in historical facts to pre-
dict future facts.

RE-NET2 (Jin et al., 2020a), a model that adopts
RNN to capture the historical dependencies of each
query and RGCN to model the structural dependen-
cies of each entity.

RE-GCN3 (Li et al., 2021), a recurrent evolu-
tion network model that learns the evolution of
entities and relations based on the results of a rela-
tional graph neural network. Moreover, the static
properties of entities are also incorporated via a
static graph module (Since other models do not
utilize additional information, we remove the static
properties in RE-GCN to ensure the fairness of
comparisons among models).

xERTE4 (Han et al., 2021a), an explainable
model that designs a temporal relational attention
mechanism to extract sub-graphs around the query.

1https://github.com/CunchaoZ/CyGNet
2https://github.com/INK-USC/RE-Net
3https://github.com/Lee-zix/RE-GCN
4https://github.com/TemporalKGTeam/xERTE

Datasets ICEWS14 ICEWS05-15 ICEWS18 GDELT

E 6,869 10,094 23,033 7,691
R 230 251 256 240

Train 74,845 368,868 373,018 1,734,399
Valid 8,514 46,302 45,995 238,765
Test 7,371 46,159 49,545 305,241

Time gap 24 hours 24 hours 24 hours 15 mins

Table 3: The statistics of the datasets. Time gap rep-
resents time granularity between temporally adjacent
facts.

TITer5 (Sun et al., 2021), a reinforcement
learning-based model, which includes a time-
shaped reward based on Dirichlet distribution to
guide the model training.

TiRCN6 (Li et al., 2022), a model that utilizes
a local recurrent graph encoder network to cap-
ture the historical dependency of events at adjacent
timestamps and uses the global history encoder net-
work to collect repeated historical facts (We also
remove the static properties to ensure the fairness
of comparisons among models).

CENET7 (Xu et al., 2023), a model based on
contrastive learning that learns both the historical
and non-historical dependencies to distinguish the
most potential entities.

C Implementation Deatils

We implement our L2TKG in Pytorch (Paszke
et al., 2019) and DGL Library (Wang et al., 2019).
We use Adam optimizer (Kingma and Ba, 2015)
with learning rate set to 0.001 and l2 regularization
λ2 set to 10−5. The embedding size is fixed to 200
for all methods. For the L2TKG hyper-parameters,
we apply a grid search on the validation set: the
k1 and k2 values are searched in {2, 4, ..., 20}, the
SE layer number ω and LRL layer number β in
{1, 2, 3, 4}, and the length of local temporal repre-
sentation m in {1, 2, · · · , 10}.

For ICEWS14, ICEWS05-15, ICEWS18, and
GDELT, the optimal k1 values are 8, 10, 6, and 6.
The optimal k2 values are 10, 10, 6, and 8. The
optimal LRL layer number β are 2, 2, 1, and 2. The
optimal length of local temporal representation m
for are 3, 5, 6, and 1, respectively. The optimal SE
layer number ω is 2 for all datasets. For the SE, we
set the block dimension to 2 × 2 and the dropout
rate for each layer to 0.2. For the ConvTransE of
the score function, the number of kernels, kernel

5https://github.com/JHL-HUST/TITer
6https://github.com/Liyyy2122/TiRGN
7https://github.com/xyjigsaw/CENET

https://github.com/CunchaoZ/CyGNet
https://github.com/INK-USC/RE-Net
https://github.com/Lee-zix/RE-GCN
https://github.com/TemporalKGTeam/xERTE
https://github.com/JHL-HUST/TITer
https://github.com/Liyyy2122/TiRGN
https://github.com/xyjigsaw/CENET

0 4 8 12 16 20
:-values

44

46

48

44

46

48

Intra-time :1

Inter-time :2

(a) ICEWS14

0 4 8 12 16 20
:-values

54

57

60

54

56

58

Intra-time :1

Inter-time :2

(b) ICEWS05-15

0 4 8 12 16 20
:-values

32

33

34

31

32

34

Intra-time :1

Inter-time :2

(c) ICEWS18

0 4 8 12 16 20
:-values

19

20

22

19

20

21

Intra-time :1

Inter-time :2

(d) GDELT

Figure 5: Performance of L2TKG under different k-
values in terms of MRR (%).

size, and the dropout rate are set to 50, 2× 3, and
0.2, respectively.

To improve the efficiency of L2TKG while en-
suring the performance, we properly process histor-
ical TKG data when predicting query (es, r, ?, t+
1). Specifically, we only use the historical KG se-
quence in which es has appeared for the learning
of latent relations. For example, entity es has ap-
peared at time t1, t2, and t3, where t3 < t + 1.
Then we input the representations of entities in
{Gt1 ,Gt2 ,Gt3} into the LRL module to mine and
exploit important latent relations.

For the compared methods, we use the default
hyper-parameters except for dimensions. We run
the evaluation five times with different random
seeds and report the mean value of each method.
All experiments are conducted on NVIDIA Tesla
V100 (32G) and Intel Xeon E5-2660.

D Sensitivity Analysis (RQ4)

The structural encoder (SE) and latent relation
learning (LRL) are two vital modules in our model.
This section studies how hyper-parameters, the k
value of the sparse operations (Intra-time and Inter-
time learning), and the layer numbers of LRL and
SE affect the performance of L2TKG.

D.1 Effect of k Values in LRL
The values of k1 and k2 determine the number of
newly learned intra-time and inter-time latent re-
lations. Figure 5 shows the model performance

0 2 4
Layer numbers

44

46

48

35

40

45

SE Layer (%)
LRL Layer (%)

(a) ICEWS14

0 2 4
Layer numbers

40

50

60

40

48

56

SE Layer (%)
LRL Layer (%)

(b) ICEWS05-15

0 2 4
Layer numbers

32

33

34

28

32

36

SE Layer (%)
LRL Layer (%)

(c) ICEWS18

0 2 4
Layer numbers

18

20

21

15

18

21

SE Layer (%)
LRL Layer (%)

(d) GDELT

Figure 6: Performance of L2TKG under different layer
numbers of SE and LRL in terms of MRR (%).

0 500 1000 1500 2000
Runtime (seconds)

ICEWS14

ICEWS18

ICEWS05-15

GDELT

RE-NET xERTE TiRCN L2TKG RE-GCN

Figure 7: Runtime (seconds) comparison to some base-
lines.

under varied k1 and k2 values, respectively. When
adjusting one ki value, the other ki uses the opti-
mal value. ki = 0 means that our model does not
consider the corresponding types of latent relations
learning.

From the results, we can find that the model
performance improves at the initial stage where
the two k values increase, which verifies that the
two latent relations can provide more effective in-
formation for TKG reasoning. However, when k
continues to increase, the trend will decrease. The
reason might be that many unimportant latent rela-
tions are introduced as noise to interfere with the
model. This demonstrates the necessity of k-NN
sparsification in the LRL module.

D.2 Effect of LRL Layer Nubmer β

The number of layers in LRL decides the degree of
utilizing the latent relations. In this part, we con-
duct our model when the LRL layer number β is in
the range of {0, 1, 2, 3, 4}. The results are shown
in Figure 6 (yellow line). We can find our method
achieves significant improvement between β = 0
and β > 0, which validates the rationality of min-
ing the latent associations in TKG reasoning. When
further stacking the LRL layer, the performance of
L2TKG begins to deteriorate, which is probably
because the LRL suffers from the over-smoothing
problem (Li et al., 2018a).

D.3 Effect of SE Layer Number ω

The number of layers in SE determines the degree
of modeling semantic dependencies among concur-
rent facts. We also set the SE layer number ω in
the range of {0, 1, 2, 3, 4} and conduct our model.
From the results in Figure 6 (blue line), we can find
that our model achieves the best performance when
ω = 2 and significantly outperforms the value at
ω = 0, which demonstrates that utilizing the high-
order neighbor information in concurrent entities
can enhance the semantic representations of enti-
ties at each timestamp. As the number of layers
further increases (ω > 2), the model’s performance
begins to decline, which may be because the use of
higher-order information makes it easy to introduce
noise and lead to over-smoothing.

E Efficiency

To investigate the efficiency of our model, we com-
pare L2TKG with RE-GCN, TiRCN, xERTE, and
RE-NET in terms of inference time on the test
set. From Figure 7, we can find that although
our L2TKG mines and exploits many important
latent relations from historical entities, the infer-
ence speed is still higher than TiRCN, xERTE,
and RE-NET. We attribute this efficiency to the
sparsification operations of LRL (§4.2) and proper
data processing (Appendix C). Besides, L2TKG is
mainly based on the GNN model that can perform
parallel computation, thus ensuring a better balance
of performance and efficiency.

