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Abstract. Personalized ranking is a typical task of recommender sys-
tems. It can provide a set of items for specific user and help recommender
systems more correctly direct each item to its user. Recently, as the dra-
matically increasing social media, an entity, i.e., user and item, usually
associates with multiple kinds of characterized information, e.g., explic-
it ratings, implicit feedbacks, and multi-type attributes (such as age,
sex, occupation, or posts of user). Intuitively, comprehensively consider-
ing these information, we can obtain better personalized ranking results.
However, most conventional methods only take collaborative informa-
tion (explicit ratings or implicit feedbacks) or single type attributes into
account. In this work, we investigate how to combine multiple attribute
and collaborative information to learn the latent factors for entities and
the attribute-aware mappings. As a result, we propose a novel Multiple-
attribute-aware Bayesian Personalized Ranking model, Maa-BPR, for
personalized ranking, which can learn reliable latent factors for entities
as well as effective mappings for multiple attribute. The experimental re-
sults show that, compared with the state-of-the-art methods, Maa-BPR
not only provides better ranking performance, but also is robust to new
entities and the incomplete attributes.

Keywords: Personalized Ranking; Multiple Attribute; Cold Start

1 Introduction

Due to the dramatically increasing content in the Web, users are now suffering
from the information overload. To cope with such heavy burden, recommender
systems, which embed personalized ranking techniques, have attracted a signif-
icant attention from both academic and industrial communities. For example,
Taobao and Amazon use personalized ranking techniques to improve their rec-
ommender systems in order to attract customers for more purchasing.

Among a variety of recommendation methods, the collaborative factorization
is one of the most successful approaches, which learns low dimensional latent rep-
resentations for both users and items. Most of work [1–3] in this field is based on
explicit ratings. However, explicit ratings are generated by users actively inter-
acting with the systems, and are hard to be obtained in practice. For instance,
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users are encouraged to provide ratings for the movies on the site of MovieLens,
and then the recommender system provides recommendation services based on
these explicit ratings. In many scenarios, the systems can only obtain implicit
interactions between users and items, e.g., whether a user viewed a web page
or whether a customer purchased an item. These binary signals are called as
implicit feedbacks. Recently, some factorization methods [4–6] are proposed to
exploit the implicit feedbacks for personalized ranking. Typical examples, such
as Bayesian Personalized Ranking (BPR) [7] and its extensions [8, 5, 1], are pop-
ular for personalized ranking by assuming that users are interested in items they
had selected than the remaining items.

The above factorization methods indeed promote personalized ranking a lot.
However, they are easily suffering from the cold start problem because of lack-
ing enough collaborative information for entities. Recently, with the increasing
of social media, apart from collaborative information, there is much attribute in-
formation associated with entities, such as the profiles, posts of users, and the de-
scription of items. By utilizing such information, researchers have proposed some
methods [8, 9] to deal with the lack of enough collaborative information. These
methods usually treat the attribute information as complete supplementary to
collaborative information. However, in real-word applications, the attribute in-
formation is usually noisy, incomplete and having multiple types. How to cope
with these issues is still a challenge in personalized ranking. Besides, since the
implicit feedbacks are widespread and easy to be collected, how to systemati-
cally combine vast multiple types of attributes and sparse implicit feedbacks to
achieve better recommendation performance is still a thorny problem.

In this paper, for enhancing the performance of personalized ranking, we pro-
pose a novel model, which can fuse multiple attribute, and jointly learn latent
vectors for entities as well as effective mappings for multiple attribute. Different
from the traditional attribute-aware factorization models [10, 8], which usually
assume that the attribute information of entities is complete and only has single
type, our proposed model is robust to the incomplete attributes and multiple at-
tribute. Moreover, we present an advanced parameter learning algorithm, which
is different from the traditional methods that segment the processes of learn-
ing latent vectors and learning attribute mappings into two independent parts.
Through a unified parameter learning framework of systematically combining
multiple attribute and implicit feedbacks, our parameter learning algorithm can
learn more reliable latent vectors for entities as well as obtain the mappings from
the multiple attribute spaces to the latent feature space.

In a nutshell, our contributions in this paper are listed as follows:

1. To systematically combine collaborative information and attribute infor-
mation for personalized ranking, we propose a multiple-attribute-aware method,
Maa-BPR, which can learn more reliable latent vectors for entities and obtain
the attribute-aware mappings.

2. For fusing multiple attribute, we bring structured regularizers into our
model, and provide a reasonable solution for jointly learning parameters.
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3. For investigating the performance of our method, we conduct a series
of experiments, and the results show that our method can combine multiple
attribute and implicit feedbacks for improving personalized ranking.

2 Related Work

In this section, we discuss related work in two branches, i.e., collaborative meth-
ods and attribute-aware methods.

Collaborative methods [4, 7, 11] are usually based on a mass of users interac-
tions with items, which are called as collaborative information. These methods
attempt to factorize collaborative information, and map users and items into a
shared latent space. Matrix factorization (MF) [12] is a classical factorization
method to be used for dealing with explicit ratings. There are various extensions
of MF for personalized ranking. For instance, for dealing with implicit feedbacks,
implicit MF (iMF) [4] extends the basic MF by introducing adaptive confidence
weights for each user-item pair. Although MF methods, e.g., iMF, can be ex-
tended to deal with implicit feedbacks, the phenomenon of data skew commonly
exists in the datasets of implicit feedbacks (the number of positive samples is
usually less than one percent of the total number), which causes the MF based
methods to easily suffer from the over-fitting problem. Recently, Rendle et. pro-
pose a framework for personalized ranking, i.e., Bayesian Personalized Ranking
(BPR) [7], which can cope with data skew in implicit feedback datasets. BPR
and its extensions [5, 1, 6] make a pair-wise assumption that users are interested
in items they had selected than the remaining items, which results in a pair-wise
ranking object that tries to discriminate between a small set of selected items
and an extremely large set of irrelevant items. Since massive training instances
will be derived by the assumption, the learning of parameters is typically based
on a stochastic gradient descent (SGD) with uniformly drawn pairs [6].

On the other hand, since the attribute information can indicate many char-
acteristics of entities, attribute-aware methods [8, 2, 13] are also a kind of main-
stream approaches in the field of personalized ranking. For example, in Factor-
ization Machines (FM) [2], all kinds of attribute information are concatenated
into a feature matrix, and then factors associated with attributes are learned
by a process of rating regression. However, in real-world applications, the at-
tribute information usually is multiple types, noisy and redundant. For fusing
multiple attribute, [13] and [14] have been proposed, which utilize techniques of
structured sparsity to handle multi-type attributes. Besides, to alleviate the cold
start problem, Map-BPR [8] improve BPR framework to learn attribute-aware
mappings from both collaborative information and attribute information. Note
that, unlike Map-BPR that only treats the attributes as complete information
with a single type, our work takes multiple, noisy and redundant attributes in-
to account. Moreover, due to the limitation of parameter learning, the latent
vectors of observed entities learned by Map-BPR only encode the collaborative
information of entities, while our learning algorithm can learn the latent vectors
of combining collaborative information and attribute information for entities.
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3 Proposed Model

In real applications, recommender systems mainly obtain two kinds of informa-
tion, i.e., collaborative information and attribute information. The information
linked to a user-item pair is called as collaborative information, e.g., explic-
it ratings and implicit feedbacks. The information pertaining to one entity is
the attribute information, e.g., profile and posts of a user, or genre, cast and
description of movies, etc.

In this section, we explore these two kinds of information, and propose a new
model to incorporate the collaborative information and the attribute information
into a unified personalized ranking framework. Before diving into the details, we
first present our model from a sketched view. Then, we will introduce how to
model the implicit feedbacks and the multiple attribute respectively. Finally, we
formally propose our model and give the algorithm of parameter learning.

3.1 The Sketch of Model

In traditional factorization models [4, 7, 11], every entity is represented by a
latent vector, which can be learned if the entity occurs in the (collaborative)
training set. However, when the models are suffering from an entity associated
with few collaborative data, the latent vector of the entity could not be well
learned. Furthermore, new entities without any collaborative information could
be added into the real systems at any time. To employ factorization models for
the entities of lacking collaborative information, a common method is to learn
the attribute mappings from the attribute space to the latent feature space,
and then estimate the latent vectors for these entities of lacking collaborative
information by their existing attribute information.

Fig. 1. The framework of combining collaborative information and attribute informa-
tion into a factorization model.

Figure 1 illustrates the sketch of our factorization model. Our model is driven
by three kinds of data: the collaborative training data (left), the latent factors of
entities (middle) and the attributes of entities (right). The rectangles in the mid-
dle part represent the factor matrices, where the entities of lacking collaborative
data have no latent factors. These unknown latent factors will be estimated using
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the corresponding attribute mappings. Thus, taking the attribute information in-
to account, the training of our model consists of the following alternant learning
steps: learning the latent vectors of entities from the collaborative information
and the attribute information; then, learning the attribute-aware mappings from
the latent vectors of observed entities and their attributes.

3.2 Learning Latent Factors From Implicit Feedbacks

BPR [7] is a popular personalized ranking framework for dealing with the implicit
feedbacks. In the BPR framework, if the user um has selected the item vi but
not selected the item vj , then the work of BPR assumes that, um prefers vi over
vj , and defines the pairwise preference of of um as

p(i �m j) := Φ(xmij ), (1)

where Φ(x) = 1/(1 + exp(−x)) and xmij := r(um, vi) − r(um, vj). r(·, ·) can be
any kind of scoring functions which indicate the relevance between two entities.

Because this work mainly focuses on studying the implicit feedbacks, we
simply follow the pair-wise assumption of BPR [7] to create training data DS :=
{(m, i, j)|vi ∈ I+um

∧ vj ∈ I \ I+um
} from collaborative training data, where I+um

denotes the set of the observed items which are linked to the user um, and the
triple t = (m, i, j) in DS represents the user um is relevant to the item vi but
irrelevant to the item vj . For simplicity, we call vi as a positive item of um, while
vj is a negative item of um. It should be noted that the training triples can be
easily created from any datasets with explicit ratings. For example, if the user
um has given a higher score to the item vi than the item vj , then we can treat
vi as the positive item of um and vj as the negative one.

After obtaining the training triples, the goal of BPR is to maximize the
likelihood of all pair-wise preference:

arg max
Θ

∏
(m,i,j)∈DS

p(i �m j), (2)

which is equivalent to minimize the negative log likelihood:

Lfeedback = −
∑

(m,i,j)∈Ds

lnΦ (xmij ) + λ||Θ||2, (3)

where Θ is the latent feature vectors of entities and λ is a hyper-parameter.

3.3 Learning Attribute-Aware Mappings

In the above sections, we have illustrated how to learn the latent factors of
entities only considering implicit feedbacks. However, in the real recommender
systems, entities are not always having enough collaborative information, e.g.,
new entities will be added into the systems at any time. Therefore, apart from
the collaborative information, we also need to take the attribute information
of entities into account for learning latent vectors of entities. For the sake of
simply bridging the attribute space and the latent space, as shown in Figure 2,
we concatenate the multiple attribute of an entity into an attribute vector, and
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Fig. 2. The schematic diagram of mapping from the attribute space to the latent
feature space, where we assume an entity contains three different types of attributes.
We concatenate all attributes into an attribute vector, and map the attribute vector
to be the latent factors by the attribute-aware mapping matrix. Besides, for dealing
with the multiple attribute which is noisy, redundant and consists of multiple types,
G1-norm and l2,1-norm are used for regularization on the mapping matrix.

then leverage a linear mapping to map the attribute vector to be a latent vector.
Thus, our task is in turn to learn the linear mappings for attribute information.

Here, we formally present an unsupervised solution for learning the linear
mappings. In this work, we consider the classical scenario of recommendation,
which has two types of entities, i.e., users (e.g., customers) and items (e.g.,
movies, books and songs). We use u and v to denote a user and an item, re-
spectively. For simplicity, we use e to denote an abstract entity, which can be a

user or an item. y
(e)
i denotes the latent vector of the entity ei and the matrix

Y (e) = [y
(e)
1 , y

(e)
2 , y

(e)
3 ...] is the latent vectors of all the users/items. For example,

y
(u)
m denotes the latent vector of user um and Y (u) denotes the latent matrix of

user. Besides, we use the matrix A(e) = [a
(e)
1 , a

(e)
2 , a

(e)
3 , ...] to denote the multiple

attribute of entities. a
(e)
i ∈ Rd is an attribute vector concatenating k types of

attributes, where d is the total number of attributes of an entity, each type j has
dj attributes, and d =

∑k
j=1 dj . Then, we can present the objective function to

learn the attribute-aware mappings from the attributes of k types:

Lattribute = ||A(e)W (e) − Y (e)||2F , (4)

where W (e) = [w1
1, ..., w

1
c ; ..., ..., ..., ;w

k
1 , ..., w

k
c ] ∈ Rd×c denotes a mapping ma-

trix, and c is the dimension of latent vectors. wqp indicates the weights of all
attributes in the q-th type with respect to the p-th latent factor.

However, the optimization problem expressed by Eq. (4) has infinite solu-
tions because of lacking supervised information. Fortunately, using the BPR

framework, we can obtain an approximate latent matrix Ỹ (e) for Y (e) from the

collaborative information. As a result, we can treat Ỹ (e) as pseudo labels, and
substitute it into Eq. (4). With the pseudo labels, we can solve the optimization
problem, and jointly learn the mapping matrix W (e) from both the collaborative
information and the attribute information.



Multiple Attribute Aware Personalized Ranking 7

However, the attributes of entities usually are multiple types, noisy and re-
dundant. Taking these issues into considerations, we still need to design a proper
scheme to deal with the interrelations among multiple attribute, and select the
informative attributes from a mass of attributes.

In multiple attribute fusion, different types of attributes can be more or less
discriminative for different factors. For instance, the description of a movie is
usually more associated with the genre of the movie, while the cast of this movie
indicates the potential popularity of the movie. To capture the interrelations
between multiple attribute and latent factors, we attempt to conduct structured
sparsity on mapping matrices. Thus, the group l1-norm (G1-norm) [15] is used for

regularization, which is defined as ||W ||G1
=

∑c
i=1

∑k
j=1 ||w

j
i ||2. As illustrated

in Figure 2, the G1-norm uses l2-norm within each type of attributes and l1-
norm between types. In this way, the sparsity between different types is enforced
[15], i.e., if attributes of one type are not discriminative for the latent factors of
a certain group, the elements corresponding to those latent factors in W (e) will
be assigned with zeros (in practical case, they are usually very small values),
otherwise, their weights should be large.

Besides, in certain cases, even if most attributes of one type are not discrim-
inative for the latent factors of any groups, there are still a small number of
attributes in this type to be highly discriminative. Such important attributes
should be shared by all latent factors. Thus, the l2,1-norm [16] is also used for

regularization, which is defined as ||W ||2,1 =
∑d
i=1 ||W (i :)||2, where W (i :) is

the i-th row of matrix W . Thus, the linear mappings can be learned by

Lattribute =
∑

e∈{u,v}

λ(e)(||W (e)A(e) − Ỹ (e)||2F + ||W (e)||G1 + ||W (e)||2,1), (5)

where λ(e) is a hyper-parameter for tuning the weight of users or items.

3.4 The Unified Model and Parameter Learning

To systematically incorporate collaborative information and attribute informa-
tion into a solution, our model for learning latent vectors and attribute-aware
mappings can be expressed as

arg min
Θ,W

Lfeedback + Lattribute =

−
∑

(m,i,j)∈Ds

lnΦ
(

(y
(v)
i − y

(v)
j )y(u)m

)
+ λ||θ||2

+
∑

e∈{u,v}

λ(e)
(
||W (e)||G1 + ||W (e)||2,1 + ||A(e)W (e) − Y (e)||2F

)
.

(6)

To learn the parameters Y (u), Y (v), W (u) and W (v) in Eq. (6), we design
an alternative optimization algorithm, which uses SGD with uniformly drawn
training triples to learn the latent vectors and implements matrix decomposition
to learn the mapping matrices.

In each iteration, when we are updating the latent factor matrix Y (e), we set
the mapping matrix W (e) to be a constant and Lattribute, the entire optimization



8 Weiyu Guo, Shu Wu, Liang Wang and Tieniu Tan

objective of attribute information, to be a regularizer. Thus, the gradient of an
arbitrary latent parameter θ is

∂L

∂θ
=

∑
(m,i,j)∈Ds

(
1− Φ

(
(y

(v)
i − y

(v)
j )y(u)m

)) ∂((y
(v)
i − y

(v)
j )y

(u)
m )

∂θ

+
∂
∑
e∈{u,v} λ

(e)
(
||A(e)W (e) − Y (e)||2F

)
∂θ

+ λθ.

(7)

The updating rule for parameter θ is θ = θ + η ∂L∂θ , where η is the learning rate.

On the other hand, given a latent factor matrix Y (e), we view Y (e) as pseudo
labels and treat Lfeedback as a constant. Thus, the optimization objective of Eq.
(6) is equal to Lattribute = 0 and the updating rule for W (e) can be derived as

wi = (A(e)(A(e))T − λDi + γD̃)−1A(e)Y (e)(i :), (8)

where Y (e)(i :) is the i-th row of matrix Y (e). Di is a block diagonal matrix with

the j-th diagonal block as 1

2||wj
i ||2

Ij . Ij is an identity matrix with size of dj . D̃

is a diagonal matrix with the j-th diagonal element as D̃(j, j) = 1
2||W (e)(j:)||2

.

Note that both Di(1 ≤ i ≤ c) and D̃ are dependent on W (e). Thus, they are also
unknown variables but can be approximatively calculated by the value of W (e)

in last iteration.
In a nutshell, the iterative algorithm for learning parameters of Maa-BPR is

summarized in Algorithm 1. The algorithm mainly repeats two learning steps
until the parameters reach convergence, i.e., it first learns the latent factors of
entities from implicit feedbacks, by SGD with uniformly drawn training triples,
then it learns the attribute mapping matrices by given latent factors.

4 Experiment

In this section, we perform experiments to validate our proposed model by com-
paring with other approaches on real world datasets. In the following experi-
ments, we first investigate the comprehensive prediction quality by evaluating
Area Under the ROC Curve (AUC) and Mean Average Precision (MAP). Then,
we study the performance of our method on Top-N recommendation. Finally, we
study the cold start problem by simulating the recommendation of new items.

4.1 Datasets

For evaluating our method, we use two real world datasets, i.e., DBLP1 and
MovieLens2, and carry out training and testing on randomly split training (80%)
and testing (20%) data.

DBLP contains 2,084,055 papers with 2,244,018 citations. Each paper may
be associated with abstract, authors, published year, and title. We preprocess
the DBLP data to be an experimental data set in a similar way as [6]. More

1 http://arnetminer.org/citation
2 http://grouplens.org/datasets/movielens
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Algorithm 1 Learn parameters for Maa-BPR

Input:
The triple set Ds;
The content feature of entities A := {A(u), A(v)};

Output:
Θ := {Y (u), Y (v)}, W := {W (u), W (v)};

1: Initialize Θ and W ;
2: repeat
3: uniformly draw a triple (m, i, j) from Ds;
4: for each latent vector θ ∈ triple (m, i, j) do
5: θ ← θ + η ∂L

∂θ
;

6: end for
7: for each W (e) ∈W do
8: Calculate the block diagonal matrix D̃;
9: Calculate the block diagonal matrices Di(1 ≤ i ≤ c);

10: for each column wi(1 ≤ i ≤ c) ∈W (e) do

11: wi ← (A(e)(A(e))T − λDi + γD̃)−1A(e)Y (e)(i :);
12: end for
13: end for
14: until convergence

specifically, we sample 1,000 authors who have published no more than 5 papers
and cited 5-100 papers from the DBLP data. Thus, we obtain 1,000 authors,
16,313 papers and 23,506 author-paper pairs. Each author-paper pair denotes
a relation of the author cited the paper. In the experiments, we treat texts in
published papers of an author as the content information of this author, and
paper text as content information of the paper. We use the term-frequency over
texts as features of content information. Our task is to predict the personalized
ranking of citing papers for each author.

MovieLens includes 100,000 ratings by 943 users on 1682 movies. Each user
has rated at least 20 movies. In our experiments, the age, gender and occupation
of a user are used as the multiple attribute of the user, and the genre of movie
and key words in title are viewed as the multiple attribute of an item. Using the
same processing method in [17], we do not use the rating values but just binary
rating events by assuming that users tend to rate movies they have watched. For
a specific user, our task is to predict the potential ranking list of movies.

In addition, comparing these two experimental datasets, we can observe that:
1) the implicit rating matrix of DBLP data set is sparser than that of Movie-
Lens; 2) each entity in MovieLens has its corresponding attributes, but entities
in DBLP always lack corresponding texts. Thus, in DBLP, many authors and
papers have incomplete attribute information.

4.2 Compared Methods

Table 1 shows the characteristics of compared methods. Our method, i.e., Maa-
BPR is first compared with two basic methods, i.e., BPR-MF [7] and iMF
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[6], which only consider implicit feedbacks. Then, we investigate two advanced
attribute-aware methods, i.e., Map-BPR [8] which extends BPR with attribute
mappings and FM [2] which is an attribute-aware framework. In our experi-
ments, since the datasets we used existing data skew, i.e., the number of positive
feedbacks is far less than the number of negative feedbacks, we train FM and MF
with the training data sets which contain randomly drawn negative feedbacks,
i.e., the proportions of negative feedbacks and positive feedbacks are 50 : 1 on
DBLP and 100 : 1 on MovieLens.

Table 1. The characteristics of compared methods

Method Attribute Feedback Cold start
BPR-MF no implicit no

iMF no implicit no
FM yes implicit/explicit yes

Map-BPR yes implicit yes
Maa-BPR yes implicit yes

4.3 Results and Discussion
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Fig. 3. The comprehensive prediction quality, i.e., Mean Average Precision (MAP) and
Area under the ROC curve (AUC), on DBLP and MovieLens.

Figure 3 presents the ranking performance of methods evaluated by MAP
and AUC. Since the attribute information is noisy and consists of multiple types,
the traditional attribute-aware methods, e.g., FM, usually could not get reliable
results. On the other hand, due to the lack of enough collaborative informa-
tion, the methods only considering implicit feedbacks, e.g., iMF and BPR-MF,
also could not get ideal results. Owing much to combining multiple attribute
and implicit feedbacks, Maa-BPR consistently outperforms other methods. Fur-
thermore, we observe that, although both Map-BPR and Maa-BPR combine
attribute information and collaborative information to learn the attribute map-
pings, the performance of Maa-BPR on different datasets is more stable than
these of Map-BPR. This result demonstrates that, our method is more robust
than Map-BPR in terms of incomplete attribute information. This is because
that our method fuses multiple attribute, and jointly learns latent vectors from
implicit feedbacks and multiple attribute.

Figure 4 shows the precision of different methods with varying numbers of
recommendations. Our method achieves the best performance in most cases, es-
pecially in recommending a small set of items. Since in real-world scenarios, users
only care about several items which are listed on the top places, this experiment
of Top-N recommendation in turn shows that our method can well fit recom-
mender systems. In addition, with the number of recommendations increasing,
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the performance of attribute-aware methods decline more quickly than the meth-
ods only taken collaborative information into account. This phenomenon may
indicate that the attribute information usually has more noise than collabora-
tive information. Thus, it is valued for designing proper schemes to alleviate the
noise of attributes, when modeling the attributes of entities.
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Fig. 4. The performance of Top-N recommendation on DBLP and MovieLens.
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Fig. 5. The performance of new items recommendation on the DBLP dataset. We only
evaluate the user-item pairs when the items are not occurring in the training set.

For investigating the cold start problem, we assess the performance of new
items recommendation in Figure 5. In the experiments, We only evaluate the
user-item pairs which their items are not occurring in the training set. Due to
the lack of collaborative information, the traditional methods without consid-
ering attribute information can only provide random recommendation results,
while most attribute-aware methods have better performance regardless of com-
prehensive prediction and Top-N recommendation. Moreover, Maa-BPR obtains
the best results among attribute-aware methods. Besides, we can observe that
FM has poor performance on the experiment of Top-N recommendation, espe-
cially in recommending a small set of items. This result may be because that
FM only takes attributes into account, and Top-N recommendation is easily
influenced by the noise in attributes.

5 Conclusions

For promoting personalized ranking by fusing multiple attribute, this paper has
proposed a novel personalized ranking model, Maa-BPR, which combines mul-
tiple attribute and interactions between entities to learn latent vectors for enti-
ties and attribute-aware mappings for multiple attribute. Comprehensive exper-
iments have shown that our model achieves better predictive performance and is
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robust to both the cold start problem and incomplete attributes. However, the
strategy of randomly drawn training triples would cause a slow convergence. In
the future, to speed up the parameter learning process and further promote the
performance of our model, we plan to improve the sampling strategy by taking
attribute information of items and social information of users into account.
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