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Abstract
Graph classification is a challenging research task
in many applications across a broad range of do-
mains. Recently, Graph Neural Network (GNN)
models have achieved superior performance on
various real-world graph datasets. Despite their
successes, most of current GNN models largely
suffer from the ubiquitous class imbalance prob-
lem, which typically results in prediction bias to-
wards majority classes. Although many imbal-
anced learning methods have been proposed, they
mainly focus on regular Euclidean data and can-
not well utilize topological structure of graph (non-
Euclidean) data. To boost the performance of
GNNs and investigate the relationship between
topological structure and class imbalance, we pro-
pose GraphDIVE, which learns multi-view graph
representations and combine multi-view experts
(i.e., classifiers). Specifically, multi-view graph
representations correspond to the intrinsic diverse
graph topological structure characteristics. Exten-
sive experiments on molecular benchmark datasets
demonstrate the effectiveness of the proposed ap-
proach.

1 Introduction
Graph classification aims to identify the class label of each
graph in a dataset, which is a critical and challenging prob-
lem for a broad range of real-world applications, such as
drug discovery, text classification, and disease diagnosis. For
instance, in chemistry, a molecule can be represented as a
graph, where nodes denote atoms, and edges represent chem-
ical bonds. Correspondingly, the classification of molecular
graphs can help predict target molecular properties [Hu et al.,
2020].

As a powerful approach to graph representation learning,
Graph Neural Network (GNN) models have been widely
applied in the graph classification task [Ying et al., 2018;
Xu et al., 2019]. Despite the huge success of GNNs, we
find that the performances of current GNN models are largely
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Figure 1: Test accuracy and cross-entropy loss on OGBG-HIV
dataset. The low performance of minority class hinders the over-
all performance of GNNs.

hindered by the imbalanced class distribution, which is ubiq-
uitous in practical applications. For example, in OGBG-
MOLHIV dataset [Hu et al., 2020], only about 3.5% of
molecules can inhibit HIV virus replication. Figure 1 presents
graph classification results of GCN [Kipf and Welling, 2017]
and GIN [Xu et al., 2019] on this dataset. Considering ei-
ther the test accuracy or cross-entropy loss, we observe the
notorious prediction bias phenomenon [Zhou et al., 2020]:
the classification performance of the minority class falls far
behind that of the majority class. Apparently, the low perfor-
mance of minority class hinders the overall performance of
GNNs.

A straightforward solution to boost the performance of
GNNs is to apply existing imbalanced learning methods,
which can be divided into three categories [Liu et al., 2020]:
re-sampling, re-weighting, and mixture of experts. However,
these imbalanced learning methods are initially designed for
Euclidean data (such as images and texts) and they cannot
model the influence of topological structure. In graph clas-
sification scenario, it is widely acknowledged that the topo-
logical structure of graphs has a significant impact on the
classification performance [Xu et al., 2019]. In other words,
some structures might be closely related to the majority class
while some other structures usually associate with the minor-
ity class. As a result, it is interesting to investigate whether
and how the topological structure influences the imbalanced
graph classification (IGC) problem.

To this end, we propose a novel Graph classification
network with DIVerse Experts, dubbed as GraphDIVE for
brevity. Among re-weighting, re-sampling, and mixture of
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experts (MoE) methods, we mainly investigate MoE-based
methods in this paper considering the compatibility of MoE
with neural networks [Jacobs et al., 1991]. To be more spe-
cific, both MoE and topological structure are related to the
graph representation learning process. Therefore, we can
mine the relationship between topological structure and class
imbalance. In contrast, re-weighting and re-sampling is only
related with the loss function and the selection of input sam-
ple, which makes it difficult to investigate the effect of topo-
logical structure. MoE is known to effectively improve typ-
ical imbalanced learning by combining the outputs of mul-
tiple experts [Dong et al., 2020]. Here, each expert refers
to a classifier. The success of MoE methods rely largely on
the dissimilarity of experts [Kuncheva and Whitaker, 2003;
Cunningham and Carney, 2000]. To further encourage the
dissimilarity of experts and investigate the effect of topolog-
ical structure, we propose to extract multi-view graph rep-
resentations and combine multi-view experts. Specifically,
when learning multi-view graph representations, the intrinsic
diverse topological characteristics across the graph are also
captured by GraphDIVE.

The architecture of GraphDIVE is depicted in Figure 2.
At first, GraphDIVE learns diverse representations from node
and graph levels. At each level, the learning process is con-
trolled by two hyper-parameters: α and p, where α controls
the effect of topological structure and p controls the distribu-
tion of the graph representation. By setting different values to
these two hyper-parameters, we can obtain diverse graph rep-
resentations, which are fed into multi-view experts to make a
more accurate prediction.

To sum up, the main contributions of this work are:

• To the best of our knowledge, we are probably the first
to highlight the critical importance of considering class
imbalance when designing GNNs for graph classifica-
tion task.

• We investigate the effect of topological structure to IGC.
We propose a novel graph neural network which extracts
multi-view graph representations and combines multi-
view experts.

• Extensive experiments on four class imbalance molec-
ular datasets demonstrate that GraphDIVE outperforms
other state-of-the-art methods.

To foster reproducible research, our code is made publicly
available at https://github.com/CRIPAC-DIG/DIVE.

2 Related Work
2.1 Imbalance Learning
Existing imbalance learning methods can be roughly divided
into three types [Liu et al., 2020]: re-sampling, re-weighting,
and mixture of experts.

Re-sampling methods try to alleviate the imbalanced class
distribution issue by controlling each class’s sample frequen-
cies. It can be achieved by over-sampling or under-sampling
[Chawla et al., 2002]. Nevertheless, traditional random sam-
pling methods usually cause over-fitting in minority classes
or under-fitting in majority classes. Re-weighting methods

generally assign different weights to different samples. How-
ever, these methods re-weight classes proportionally to the
inverse of the class frequency, which tends to make optimiza-
tion difficult under extremely imbalanced settings [Huang et
al., 2016]. Meanwhile, we notice that Pan et al. [Pan and
Zhu, 2013] assign different weights to graphs. But they do
not consider GNN for imbalanced classification, therefore not
in scope of our study. Mixture of Experts (MoE) is a well-
studied research topic, which is also usually under a differ-
ent name: classifier ensembles [Dong et al., 2020]. MoE is
mainly based on divide-and-conquer principle, in which the
problem space is first divided and then is addressed by spe-
cialized experts [Jacobs et al., 1991]. Different from above
existing MoE methods that rely on a single view of represen-
tation, GraphDIVE is specially designed for graph data and
explicitly explores diverse multi-view graph representations.

3 Preliminary
3.1 Problem Description
Let D = {(G1,Y1), . . . , (Gn,Yn)} denote training data,
where Gi = (Ai,Xi) denotes a graph containing the adja-
cency matrix and the node attribute matrix. Yi represents the
labels of Gi. The task of graph classification is to learn a map-
ping f : Gi → Yi. Under imbalanced classification setting,
the number of instances of majority classes is far more than
that of minority classes. The imbalanced graph classification
(IGC) problem exists widely in practical applications, such as
drug discovery, text classification and disease diagnosis.

3.2 MoE-based Imbalanced Learning
MoE is established based on Divide-and-Conquer (D&C)
principle. Specifically, the problem space is first partitioned
stochastically into a number of subspaces, then several ex-
perts are leveraged and become specialized on each subspace
[Jacobs et al., 1991]. The partition process is controlled by
a gating network, which is trained together with the experts.
Such a D&C mechanism is formulated as:

p(y|x;Θ) =
M∑
z=1

p(y, z|x;Θ) =
M∑
z=1

p(z|x;Θ)p(y|z,x;Θ),

(1)
where x is the learned representation of a sample and y de-
notes the label. Θ denotes learnable parameters of gating
network and expert networks. z ∈ {1, 2, . . . ,M} is a latent
variable indicating expert index, and M is the number of ex-
perts. Besides,

∑M
z=1 p(z|x;Θ) = 1 and p(z|x;Θ) is the

output of the gating network, indicating the probability of as-
signing x to the z-th expert. p(y|z,x;Θ) represents output
distribution of the z-th expert.

For imbalanced learning, since using one shared classi-
fier will inevitably lead to prediction bias towards majority
classes [Zhou et al., 2020], MoE methods assign different ex-
perts for different clusters instead. Here, each cluster con-
tains semantically-close instances, and the distinction of dif-
ferent clusters is achieved by the gating function. Specifi-
cally, for instances of minority classes, the gating function
assigns larger weights to some certain experts. Therefore,
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Figure 2: Model overview. GraphDIVE encourages the diversity of experts to boost the performance of GNNs. Specifically, there are mainly
three components of GraphDIVE, namely, node-level aggregators, graph-level readouts, and mixuture of multi-view experts. For pursuing the
diversity of experts, each view of MoE is fed with a specific view of graph representation. To obtain different views of graph representations,
we set different values of two hyper-parameters: α and p in the first two components, respectively. In particular, α controls the effect of
topological structure, and p controls the distributions of representations. Finally, predictions from multi-view experts are combined, yielding
the final prediction.

these experts become specialized on minority classes. Sim-
ilarly, there are some other experts specialized on majority
classes. As a result, the diversity of experts is a key factor for
the success of MoE methods [Kuncheva and Whitaker, 2003].

4 Proposed Method
In this section, we present the details of the proposed Graph
classification network with DIVerse Experts (GraphDIVE).
Existing work [Kuncheva and Whitaker, 2003; Cunningham
and Carney, 2000] have found that the diversity of experts is
a key factor for the success of MoE methods. Nevertheless,
as formulated in Eq. (1), the experts of canonical MoE meth-
ods are based on only one shard representation, which might
hinder the diversity of experts. Inspired by the development
of multi-view learning [Xu et al., 2013], we propose to learn
multi-view graph representations to boost the diversity of ex-
perts, with the overview presented in Figure 2. GraphDIVE
learns diverse graph representations from both node-level and
graph-level. This corresponds to intrinsic diverse graph topo-
logical structure characteristics. Specifically, from node-level
perspective, different nodes have different numbers of adja-
cent neighbors. From global level, different sub-graphs (mo-
tifs) recur in a graph with different frequencies. These sub-
graphs are also combined in a rather complex way. As a re-
sult, multi-view graph representations can not only encour-
age the diversity of experts, but also capture diverse topolog-
ical structure characteristics. We will introduce the details of
GraphDIVE as follows.

4.1 Diverse Node-level Aggregators
To obtain diverse graph representations, we first design di-
verse node-level aggregators. This is reasonable, since only
after diverse node-level characteristics are obtained, can dis-
tinct graph-level representations be captured. The diverse
node-level aggregators are defined as follows:

x̃k
i =

∑
j∈Ni

∣∣wαl
j

(
xk−1
j − ci

)∣∣pl

 1
pl

, (2)

where xk
i indicates the representation of the i-th node at the

k-th iteration, and Ni is the set of nodes adjacent to node i as
well as itself. wj denotes the importance weight of neighbor
node j, and αl is a hyper-parameter controlling the effect of
wj . ci denotes bias and pl controls the distributions of the
output embeddings. Notably, the subscript l is used to distin-
guish α and p from those in Eq. (4). Next, we present the
approach of computing wj and pl in detail.

Structure-aware Node Weighting

GraphDIVE assigns different weights to different nodes ac-
cording to the topological structure. It is well known that
neighbor nodes contribute differently in neighborhood aggre-
gation process [Veličković et al., 2018]. Since topological
structure plays a crucial role in GNNs, we propose to weight
different nodes considering topological structure. In graph
theory and network science, node degree is a popular indi-
cator that judges the importance of nodes in the graph. It
is defined as the number of adjacent neighbors upon a node.
Considering node centrality values may vary across orders of
magnitude [Newman, 2018], we set wj = log(1 + dj)/δ to
alleviate the impact of nodes with extremely dense connec-
tions. Specifically, δ = 1

| train |
∑

i∈ train log (di + 1) denotes
the average degree of the training data.

Besides, αl ∈ {0, 1} controls the effect of importance
weighting. Specifically, when αl equals to 0, GraphDIVE
aggregates the information from neighborhoods without con-
sidering node importance. When αl equals to 1, the node
weighting scheme is activated.
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Exploring Diverse Information from Neighborhoods
To capture divese node-level characteristics of graphs, Graph-
DIVE also facilitates the exploring of diverse information
from the neighborhoods. Each kind of information corre-
sponds to each specific distribution in the embedding space.

As formulated in Eq. (2), the hyper-parameter pl > 0
controls the distributions of the output embeddings. When
pl = 1, this aggregator behaves as average pooling and
pl = ∞ leads to max-pooling results. When pl = 2 and
ci = 1

|Ni|
∑

j∈Ni
xj , it generates standard deviation of the

node embeddings. Besides, pl ≥ 3 enables GraphDIVE to
explore other distributions from the neighborhoods.

By setting T different values to αl and pl, we can get mul-

tiple aggregated node representations: x̃(1)
i , · · · , x̃(T )

i . Then
these diverse representations are concatenated and fed into a
fully connected (FC) layer that yields the updated node rep-
resentation as:

xi = FC(x̃
(1)
i ∥ · · · ∥x̃(T )

i ), (3)

where ∥ is the concatenation operation. By doing so, we not
only enrich node representation by explicitly exploring di-
verse node-level topological structure information, but also
model the complex relations among these information.

In fact, the above diverse node-level aggregators resemble
those in PNA [Corso et al., 2020]. However, GraphDIVE is
distinct from PNA in both motivation and technique. In mo-
tivation, GraphDIVE targets at alleviating prediction bias in
the context of imbalance graph classification. It learns diverse
graph representations to boost the diversity of MoE experts.
In contrast, PNA focuses on distinguishing two graphs while
ignoring the class imbalance problem. Technically, Graph-
DIVE uses multiple readouts and diverse experts, while PNA
generates only one representation for each graph and uses one
classifier.

4.2 Diverse Graph-level Readouts
In addition to promoting the diversity of node-level represen-
tations, we further encourage the diversity of graph-level rep-
resentations that are generated from multiple readout func-
tions. This is crucial, as only one graph representation is
not able to fully capture the intrinsic diverse characteristics
across the graph. Besides, only one graph representation may
limit the diversity of experts’ prediction results, hindering the
performance of MoE methods. For such cases, we propose
diverse graph-level readout functions as:

x =

[
1

|N |
∑
i∈N

∣∣wαg

i (xi − c)
∣∣pg

] 1
pg

, (4)

where x ∈ R1×d is the global graph representation, and d
denotes the hidden dimension of graph embedding. N de-
notes the set of nodes in the graph and wi is the importance
weight of node i. αg and pg are hyper-parameters which are
similar to those defined in Eq. (2). Apparently, this readout
function is similar to the node-level aggregator in form. That
is, each node i in the graph is weighted by wi according to
topology structure, and the weighting effect is controlled by

αg . Besides, pg controls the distributions of the output graph
embeddings. By setting different values to αg and pg , di-
verse graph representations can be obtained. The difference is
that the node-level aggregator gathers information from local
neighborhoods, while the graph-level readout function gener-
ates representation from all nodes of the graph.

From the perspective of multi-view learning [Xu et al.,
2013], diverse graph-level readouts generate multi-view rep-
resentations for each graph. Each pair of αg and pg corre-
sponds to a particular view, and each view of the represen-
tation may contain some knowledge that other views do not
have. Therefore, multiple views of representations can de-
scribe the graphs comprehensively and complementarily.

4.3 Mixture of Multi-view Experts
Based on multi-view graph representations, GraphDIVE ap-
plies multi-view experts and sends each view of graph repre-
sentation to a specific view of experts. Each view of experts
refers to a specific group of classifiers. In this manner, the
output of different views of experts tend to be distinct, which
will boost the performance of MoE. Formally, GraphDIVE
generates predictions by combining the results from multi-
view experts:

p(y|x;Θ) =
K∑
i=1

p(i|x;Θ)
M∑
z=1

p(z|x(i);Θ)p(y|z,x(i);Θ)︸ ︷︷ ︸
intra-view divide and conquer︸ ︷︷ ︸

inter-view divide and conquer

,

(5)
where x(i) is the extracted graph representation from the i-
th view. Θ = {Winter ∈ Rd×K ,Wintra ∈ Rd×M ,We ∈
Rd×C} denotes learnable parameters of inter-view gating net-
work, intra-view gating network, and expert networks respec-
tively. K, M , and C denote the number of views, experts,
and label categories. Compared to conventional MoE meth-
ods in Eq. (1), the key distinction for GraphDIVE is that the
outer summation formula combines the predictions of multi-
view experts. Specifically, conventional MoE methods make
predictions based on one shared (single view) representation
while GraphDIVE applies different groups (multi-view) of
experts on different views of representations. As shown in
[Blum and Mitchell, 1998], the independence of different
views can serve as a helpful complement to the multi-view
learning. Applying specific experts for each individual repre-
sentation promotes the independence of different views and
encourages the diversity of different experts.

Since we implement each view of experts with the same
network design, we drop the superscript of view index for
notation simplicity and bear in mind that x , Winter, Wintra

and We are different in different view indices. First, we im-
plement each expert with one separate fully connected layer
followed by a sigmoid function:

p(y|z,x;Θ) = σ(xW(z)
e ), (6)

where W
(z)
e ∈ Rd×C denotes the parameters for the z-th

expert.
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Then, in each view of experts, the gating network generates
an input-dependent soft partition of the dataset based on co-
sine similarity between graph representations and gating pa-
rameters:

p(z|x;Θ)
exWintra[z]/τ∑M
j=1 e

xWintra[j]/τ
, (7)

where τ is the temperature hyper-parameter tuning the distri-
bution of the gating function, and Wintra [j] ∈ Rd×1 is the
j-th column of Wintra, which represents the gating parame-
ter for the j-th expert.

Considering the predictions obtained in different views are
based on different graph representations, they should have
different contributions in judging the graph label. As such,
we compute a weight score for each view as:

p(i|x;Θ) =
ex

(i)Winter [i]/γ∑K
j=1 e

x(j)Winter [j]/γ
, (8)

where γ is a hyper-parameter that tunes the distribution.
Winter [i] ∈ Rd×1 is the i-th column of Winter, which rep-
resents learnable gating parameters for each view.

4.4 Model Optimization
To encourage the difference of experts in the i-th view, we
introduce a Kullback–Leibler (KL) divergence regularization
term as:

Li = − 1

M − 1

M∑
j ̸=z

DKL(p(y|x, z;Θ)||p(y|x, j;Θ)), (9)

where DKL(·, ·) is the KL divergence of two distributions.
Then, the final loss function can be formulated as:

L = −
K∑
i=1

[p(i|x;Θ)
M∑
z=1

p(z|x;Θ) log p(y|x, z;Θ) + λLi],

(10)
where λ is a hyper-parameter that controls the extent of regu-
larization.

5 Experiments
5.1 Datasets and Implementation Details
Datasets. We conduct experiments on four benchmark
molecular property prediction datasets [Hu et al., 2020], in-
cluding HIV, PCBA, BACE, and BBBP. Each graph in molec-
ular graph datasets represents a molecule, where nodes are
atoms, and edges are chemical bonds. Each node contains a
9-dimensional attribute vector, including atomic number and
chirality, as well as other additional atom features such as for-
mal charge and whether the atom is in the ring.
Implementation Details. For a fair comparison, we imple-
ment our method and all baselines in the same experimen-
tal settings as [Hu et al., 2020]. Specifically, we follow the
original scaffold train-validation-test split with the ratio of
80/10/10. We run ten times for each experiment with random
seed ranging from 0 to 9, and report the mean and standard
deviation of test ROC-AUC for all datasets except PCBA.

Dataset # Graphs Avg. Size Metric Positive Ratio (%)
HIV 41127 25.5 ROC-AUC 3.5

PCBA 437929 26.0 AP 1.4
BACE 1513 34.1 ROC-AUC 45.6
BBBP 2039 24.1 ROC-AUC 23.5

Table 1: Statistics of molecular datasets.

Following the practice in [Hu et al., 2020], we report aver-
age precision for PCBA dataset.

We evaluate the performance of the proposed GraphDIVE
method on the molecular property prediction task that is a
typical graph classification application. We compare with
the following strong and representative GNN methods: GCN
[Kipf and Welling, 2017], GIN [Xu et al., 2019], FLAG
[Kong et al., 2020], GSN [Bouritsas et al., 2020] WEGL
[Kolouri et al., 2021], and PNA [Corso et al., 2020]. For
all these methods, we use official implementation and follow
the original setting.

In addition, we compare GraphDIVE with state-of-the-
art imbalanced learning methods that are initially designed
for Euclidean data, including FocalLoss [Lin et al., 2017],
LDAM [Wallach et al., 2020], GHM [Li et al., 2019], and
Decoupling [Kang et al., 2019]. The first three methods
belong to re-weighting strategy and the last one belongs to
re-sampling strategy. Since there is no GNN based method
which considers the IGC problem, we combine these imbal-
anced learning methods with the representative GCN.

For hyper-parameter setting, we train the model using
Adam optimizer [Kingma and Ba, 2015] with initial learning
rate of 0.001. For HIV and PCBA datasets, we train the net-
work for 200 epochs in light of the scale of the dataset. More-
over, for all the other datasets, we train the model for 100
epochs. According to the average performance on the vali-
dation dataset, we use grid-search to find the optimal value
for K (i.e., the number of views), M (i.e., the number of ex-
perts), and λ. We set the hyper-parameter space of K and
M as {2, 3, 4, 5, 6, 7, 8} and the hyper-parameter space of λ
as {0.001, 0.01, 0.1, 1, 10}, respectively. Besides, the hyper-
parameter space of α is {0, 1} and the hyper-parameter space
of p is {1, 2, 3,+∞}. The hyper-parameter space of τ and γ
is {0.001, 0.01, 0.1, 1, 10, 100}.

5.2 Molecular Property Prediction
Comparison with other GNNs. For molecular property pre-
diction task, we report classification results of state-of-the-art
GNN models in Table 2. Overall, GraphDIVE consistently
outperforms other GNN models across all four datasets. For
example, PNA [Corso et al., 2020] is one of the latest state-
of-the-art GNN methods for graph classification, and we can
observe that GraphDIVE achieves 0.68%, 0.44%, 3.19%, and
1.23% absolute improvement on HIV, PCBA, BACE, and
BBBP dataset, respectively.
Comparison with other imbalanced learning methods. We
also compare GraphDIVE with other state-of-the-art imbal-
ance learning methods in Table 2. Firstly, it can be observed
that the state-of-the-art imbalanced learning methods, such
as LDAM and Decoupling, do not seem to offer significant
or stable improvements over GNN models. For example,
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HIV PCBA BACE BBBP

GCN 76.06±0.97 20.20±0.24 79.15±1.44 68.87±1.51
GIN 75.58±1.4 22.66±0.28 72.97±4.00 68.17±1.48

GCN+FLAG 76.83±1.02 21.16±0.17 80.53±1.43 70.04±0.82
GIN+FLAG 76.54±1.14 23.95±0.40 80.02±1.68 68.60±1.27

WEGL 77.57±1.11 20.52±0.35 78.06 ± 0.91 68.27 ± 0.99
GSN 77.99±1.00 19.78±0.28 76.53±4.54 67.90±1.86
PNA 79.05 ± 1.32 28.38 ± 0.35 81.85±1.68 69.13±1.72

Focal Loss (RW) 76.56±1.15 22.84±0.32 81.08±2.02 67.90±1.16
GHM (RW) 75.33±1.44 19.96±0.35 80.51±1.54 67.04±1.26

LDAM (RW) 76.58±1.69 20.48±0.27 78.91±2.10 67.08±0.94
Decoupling (RS) 78.15±1.28 24.32±0.24 80.01±1.01 68.42±1.46

GraphDIVE 79.73±0.63 28.82±0.26 85.04±1.13 70.36±1.24

Table 2: Summary of classification results (%) for imbalanced
molecular property prediction. RW and RS are the abbreviation of
re-weighting and re-sampling, respectively.
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20
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Figure 3: Test accuracy (%) of minority class on BACE and BBBP
dataset.

LDAM performs better than GCN on HIV and PCBA dataset,
but it is inferior to GCN on BACE and BBBP dataset. We
suppose the reason is that either re-sampling or re-weighting
methods make the model focus more on minority class, re-
sulting in potential over-fitting to minority class [Zhou et al.,
2020]. Besides, they cannot capture the diverse topological
structure either. In contrast, we observe that GraphDIVE
outperforms these imbalanced learning methods by a large
margin. We conduct more experiments in the following parts
to investigate why GraphDIVE brings performance improve-
ment.

5.3 Prediction Bias Analysis
In this subsection, we study whether the overall performance
improvement of GraphDIVE is achieved by alleviating the
IGC problem. Specifically, we report the classification accu-
racy of minority class in Figure 3.

We have the following observations. First of all, Graph-
DIVE outperforms GCN, PNA and existing imbalanced
learning methods regarding the performance of minority
class. This result demonstrates that GraphDIVE can allevi-
ate the prediction bias. Secondly, existing state-of-the-art re-
weighting and re-sampling methods, such as LDAM and De-
coupling, have marginal performance improvements or even
performance degradation in minority class. This may be be-
cause re-weighting and re-sampling methods cannot model
the relationship between the topological structure and the
class imbalance. We give a more detailed study in Sec. 5.4.

D-Node D-Graph MoE ROC-AUC (%)
79.15± 1.44

✓ 81.85± 1.68
✓ 82.50± 0.91

✓ 82.88± 0.96
✓ ✓ 83.14± 0.86
✓ ✓ 82.76± 1.15

✓ ✓ 83.81± 0.79
✓ ✓ ✓ 85.04± 1.13

Table 3: Ablation study on the effectiveness of each component on
BACE dataset. D-Node and D-Graph refer to Diverse node-level
aggregators and Diverse graph-level readout functions, respectively.
We apply multi-view MoE only when D-Graph is used. Otherwise,
traditional single-view MoE is directly used. For any component
that is not checked, we apply its corresponding component in GCN
(i.e., symmetric normalized average aggregator, mean readout func-
tion, or single layer classifier) for substitute.

5.4 Ablation Study
To verify the effectiveness of each component, we conduct
an ablation study on node-level neighborhood aggregators,
graph-level readout functions and multi-view experts respec-
tively. The results are shown in Table 3. When each compo-
nent is individually applied (2nd, 3rd and 4th row), the per-
formance is improved compared with vanilla GCN (1st row).
This can be attributed to the exploring of complementary
graph information and the D&C mechanism, respectively.
Besides, comparing the 4th row and the last two rows, we
can observe that multi-view node-level representations and
graph-level representations can improve the performance of
vanilla MoE methods. This is because diverse graph repre-
sentations encourage the diversity of different experts.

Aside from the above results shown in Table 3, we also in-
vestigate effect of topological structure. Specifically, we dis-
card the structure-aware node weighting scheme by setting αl

and αg as zero. We observe 0.75% and 1.16% performance
degradation on HIV and BACE dataset, respectively. This re-
sult demonstrates that it is necessary and beneficial to model
topological structure for the IGC problem.

6 Conclusion
Existing GNNs largely suffer from the ubiquitous class im-
balance problem. In this paper, we have proposed Graph-
DIVE, a graph neural network with mixture of diverse ex-
perts to alleviate the prediction bias towards majority classes.
GraphDIVE learns multi-view graph representations from
both node-level and graph level. These multi-view graph rep-
resentations can not only encourage the diversity of experts,
but also capture diverse topological structure characteristics.
Experimental results on four datasets exhibit the effectiveness
and generalization ability of GraphDIVE.
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neighbourhood aggregation for graph nets. In Advances in
Neural Information Processing Systems, 2020.

[Cunningham and Carney, 2000] Padraig Cunningham and
John Carney. Diversity versus quality in classification en-
sembles based on feature selection. In European Confer-
ence on Machine Learning, 2000.

[Dong et al., 2020] Xibin Dong, Zhiwen Yu, Wenming Cao,
Yifan Shi, and Qianli Ma. A survey on ensemble learning.
Frontiers of Computer Science, 2020.

[Hu et al., 2020] Weihua Hu, Matthias Fey, Marinka Zitnik,
Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for
machine learning on graphs. In Advances in Neural Infor-
mation Processing Systems, 2020.

[Huang et al., 2016] Chen Huang, Yining Li, Chen Change
Loy, and Xiaoou Tang. Learning deep representation for
imbalanced classification. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2016.

[Jacobs et al., 1991] Robert A. Jacobs, Michael I. Jordan,
Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mix-
tures of local experts. Neural Comput., 1991.

[Kang et al., 2019] Bingyi Kang, Saining Xie, Marcus
Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and
Yannis Kalantidis. Decoupling representation and classi-
fier for long-tailed recognition. In International Confer-
ence on Learning Representations, 2019.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Rep-
resentations, 2017.

[Kolouri et al., 2021] Soheil Kolouri, Navid Naderializadeh,
Gustavo K. Rohde, and Heiko Hoffmann. Wasserstein em-
bedding for graph learning. In International Conference
on Learning Representations, 2021.

[Kong et al., 2020] Kezhi Kong, Guohao Li, Mucong Ding,
Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Tay-
lor, and Tom Goldstein. FLAG: adversarial data aug-
mentation for graph neural networks. arXiv preprint
arXiv:2010.09891, 2020.

[Kuncheva and Whitaker, 2003] Ludmila I Kuncheva and
Christopher J Whitaker. Measures of diversity in classifier
ensembles and their relationship with the ensemble accu-
racy. Machine learning, 2003.

[Li et al., 2019] Buyu Li, Yu Liu, and Xiaogang Wang. Gra-
dient harmonized single-stage detector. In AAAI Confer-
ence on Artificial Intelligence, 2019.

[Lin et al., 2017] T. Lin, P. Goyal, R. Girshick, K. He, and
P. Dollár. Focal loss for dense object detection. In
2017 IEEE International Conference on Computer Vision
(ICCV), 2017.

[Liu et al., 2020] Zhining Liu, Pengfei Wei, Jing Jiang, Wei
Cao, Jiang Bian, and Yi Chang. Mesa: Boost ensemble im-
balanced learning with meta-sampler. Advances in Neural
Information Processing Systems, 2020.

[Newman, 2018] Mark E. J. Newman. Networks: An Intro-
duction (Second Edition). Oxford University Press, 2018.

[Pan and Zhu, 2013] Shirui Pan and Xingquan Zhu. Graph
classification with imbalanced class distributions and
noise. In Twenty-Third International Joint Conference on
Artificial Intelligence, 2013.
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