
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

DyGCN: Efficient Dynamic Graph Embedding With
Graph Convolutional Network

Zeyu Cui , Zekun Li , Shu Wu , Senior Member, IEEE, Xiaoyu Zhang , Senior Member, IEEE,

Qiang Liu , Member, IEEE, Liang Wang, Fellow, IEEE, and Mengmeng Ai

Abstract— Graph embedding, aiming to learn low-dimensional
representations (aka. embeddings) of nodes in graphs, has
received significant attention. In recent years, there has been
a surge of efforts, among which graph convolutional networks
(GCNs) have emerged as an effective class of models. However,
these methods mainly focus on the static graph embedding.
In the present work, an efficient dynamic graph embedding
approach is proposed, called dynamic GCN (DyGCN), which
is an extension of the GCN-based methods. The embedding
propagation scheme of GCN is naturally generalized to a dynamic
setting in an efficient manner, which propagates the change in
topological structure and neighborhood embeddings along the
graph to update the node embeddings. The most affected nodes
are updated first, and then their changes are propagated to
further nodes, which in turn are updated. Extensive experiments
on various dynamic graphs showed that the proposed model can
update the node embeddings in a time-saving and performance-
preserving way.

Index Terms— Dynamic graphs, graph convolutional network
(GCN), neural network.

I. INTRODUCTION

GRAPHS are natural representations for encoding rela-
tional structures and therefore have a wide range of

applications in bioinformatics [14], chemistry [1], recom-
mender systems [16], and social network studies [29], among
others. However, unlike images that are in a compact grid
pattern, the graph structure presents a topological pattern,
which is not easy to process by common machine learning
methods. Although graphs can be presented in the form of an

Manuscript received 23 August 2021; revised 29 March 2022; accepted
12 June 2022. This work was supported in part by the National Key Research
and Development Program under Grant 2019QY1601 and in part by the
National Natural Science Foundation of China under Grant 62141608 and
Grant U19B2038. (Zeyu Cui and Zekun Li contributed equally to this work.)
(Corresponding author: Shu.Wu.)

Zeyu Cui is with the Alibaba DAMO Academy, Jinhui Building, Beijing
100102, China (e-mail: cuizeyu15@gmail.com).

Zekun Li is with the Department of Computer Science, University of
California at Santa Barbara, Santa Barbara, CA 93106 USA.

Shu Wu is with the Institute of Automation, Chinese Academy of Sciences,
Beijing 100098, China.

Xiaoyu Zhang is with the Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China.

Qiang Liu is with the Institute of Automation, Chinese Academy of
Sciences, Beijing 100098, China.

Liang Wang is with NLPR, CASIA, Beijing, China.
Mengmeng Ai is with the International School, Beijing University of Posts

and Telecommunications, Beijing 100876, China.
Data is available on-line at https://github.com/CRIPAC-DIG/DyGCN.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TNNLS.2022.3185527.
Digital Object Identifier 10.1109/TNNLS.2022.3185527

adjacency matrix, they are too big to save or process when the
number of nodes is increased.

Graph embedding, finding a mapping function to trans-
form each node in the graph into a low-dimensional latent
representation, is considered as an effective way to rep-
resent a graph and has attracted considerable research
efforts [12], [31], [37]. However, most researches focus on
static graph embedding, i.e., learning representations only
of static graphs. Three popular classes of graph embed-
ding have emerged in recent years, some of which are
based on matrix factorization (MF) [3], [4], [37]. Belkin
et al. [3] used singular value decomposition (SVD) to decom-
pose the node representation, whereas large-scale informa-
tion network embedding (LINE) [37] applied factorization
strategies into large-scale graph embedding. Some graph
embedding methods were inspired by the random walk strat-
egy, including DeepWalk [31] and Node2Vec [12]. These
random-walk-based methods transform the graph structure
into several random walk sequences, which can be easily
processed by the skip-gram model in Word2Vec [28]. Graph
convolution networks (GCNs) [9], [13], [18], [35], [48],
as a class of models generalizing neural networks to graph-
structured data, have recently gained significant attention.
The GCN-based methods generally follow an embedding
propagation scheme, in which the embedding of each node
is recursively updated by the aggregating message propa-
gated from its neighboring nodes [48]. Under the embedding
propagation scheme, the GCN-based methods have achieved
significant improvement in terms of both efficiency and
effectiveness.

Many graphs in the real world are inherently dynamic,
meaning that their nodes/edges may constantly change over
time. For instance, on an online platform, users may join or
leave a social network at any time and may develop new
relationships or break off other relationships over time. Users
may also change their profile information, such as age and
location. Thus, considering the graph embedding problem
in a dynamic manner is more appropriate for real-world
applications. More information can be captured when the
dynamic features of the graph are considered [17]. Although
some researches on dynamic graph embedding have been
proposed [11], [34], [38], [54], they mainly focused on mining
the pattern of graph evolvement but ignored the efficiency
issue. Their methods consequently achieved a better perfor-
mance than previous static methods. However, generating a
new representation at each time is costly, given that most

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0017-5292
https://orcid.org/0000-0002-1207-1901
https://orcid.org/0000-0003-2164-3577
https://orcid.org/0000-0003-1630-6058
https://orcid.org/0000-0002-9233-3827

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

traditional node representation methods are designed to learn
the embedding parameters through an optimization process
(e.g., gradient descent or matrix factorization). Repeating these
processes at each time step results in high complexity.

The time complexity problem originates mainly from two
aspects. First, global update time-consuming, that is to update
all the node embeddings at each time step. Second, retrain-
ing time-consuming, that is to update node embeddings via
optimization progress, e.g., matrix factorization or stochastic
gradient descent. However, both the aspects of time consump-
tion can be reduced by leveraging the dynamic relationships
between consequent time steps. Because changes in graphs
are frequent and trivial at any time, the node embedding may
not change considerably; hence, it may be unnecessary to
update the embeddings of all the nodes at each time step.
Some researchers thus try to avoid the recalculation of all
node representations and consider only the changing nodes,
e.g., DNE [7], DynWalks [15], and NetWalk [50]. Some, such
as TIMERS [52] and Dyrep [41], avoid the relearning process
and directly update the previous embeddings according to the
changes.

GCN has recently shown great power in graph embedding
and has the potential to deal with graphs incrementally [13].
Therefore, this research aims to extend GCN to the dynamic
environment in an efficient manner.

Present Work: In this study, an efficient dynamic graph
embedding framework called dynamic graph convolutional
network (DyGCN) is proposed, which extends the GCN-based
embedding models to dynamic settings. The proposed method
may be applicable to all other methods based on GCN, As
the core of DyGCN, a dynamic graph convolution operation
is devised, which naturally generalizes the embedding prop-
agation scheme of GCN to the dynamic setting, propagating
the change along the graph to update the embeddings of the
affected nodes. The process consists of two steps: the change
in the message aggregated from neighbors is first calculated,
and then the node embeddings are adjusted accordingly. The
most affected nodes are updated first. Then, the change is prop-
agated to the neighboring nodes, resulting in their update. Two
different ways of node propagation are designed: high-order
update and spectral propagation. The former is more efficient,
but the latter is more precise. Both the ways decrease the
computational time compared with other methods of dynamic
graph embedding. Extensive experiments on three real-world
datasets are carried out. The experimental results show the
efficiency and effectiveness of the proposed method compared
with other dynamic graph embedding methods and the static
counterpart (GCN).

Overall, the contributions of this work can be summarized
as follows.

1) The proposal of DyGCN as an efficient dynamic embed-
ding framework for the GCN-based embedding meth-
ods, which is capable of updating node embeddings
in dynamic graphs in a time-saving and performance-
preserving way.

2) The creation of a dynamic graph convolution operation
as the core of DyGCN, which efficiently propagates the
change along the graph to update the node embeddings.

3) Extensive experiments on various datasets to verify the
effectiveness and efficiency of the proposed approach.

II. RELATED WORKS

In this section, three streams of research related to the
present work are briefly reviewed, i.e., graph embedding meth-
ods, dynamic graph embedding methods, and graph neural
networks (GNNs). Note that we only discuss the unsupervised
graph embedding methods in this brief.

A. Graph Embedding Methods
Graph embedding (also called network embedding) is an

important research area in graph analysis. Originally, a typical
task of the dimension reduction problem, graph embedding
is defined as representing an n × n adjacency matrix as an
n × k matrix, where k � n. Some representative methods
in this line include principal component analysis (PCA) [44]
and multidimensional scaling (MDS) [20]. Afterward, some
methods such as ISOmap [39] and local linear embeddings
(LLE) [33] were later designed for better global structure
preservation. For larger scale graphs, factorization methods,
such as GraRep [4] and LINE [37], are commonly used to
apply graph embedding to larger datasets.

In recent years, deep learning methods have already
achieved promising results in the field of network embedding
areas. The first deep learning method of network embedding
is commonly recognized as DeepWalk [31]. After the suc-
cess of DeepWalk, more deep learning methods for network
embeddings have been designed. Node2Vec [12] improved the
random walk strategies of DeepWalk by a controllable deep
or wide walking possibility. SDNE [43] introduced a deep
autoencoder model to learn the 1st- and 2nd-order neighbors
of nodes. Thus far, GNNs have received considerable atten-
tion, and several frameworks have been developed, including
VGAE [19], GraphSAGE, and GAT [42].

B. Dynamic Graph Embedding Methods
There are two streams of research on dynamic

graphs. The first, called dynamic graph prediction, aims
to predict the graph structure at the next time step [30],
[36], [49]; the second, called dynamic graph embedding, tries
to learn better graph representation according to dynamic
information. The present work belongs to the latter stream.
The two tasks, graph prediction and graph embedding, can
be formulated as follows:

GT +1 = f
(G≤T

)
(1)

X T = f
(G≤T

)
(2)

where GT is the graph structure at time step T . X T is the
embedding at time step T . Because this work aims to learn
representations for dynamic graphs in an efficient manner,
some graph prediction methods, such as EvolveGCN [30] and
DynGraph2Vec [10], are not discussed here.

Dynamic graph embedding was initially considered as an
extension of static graph embedding. Researchers simply used
the static network embedding methods in each snapshot during
each time step, with the constraint of aligning the same nodes

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: DyGCN: EFFICIENT DYNAMIC GRAPH EMBEDDING WITH GRAPH CONVOLUTIONAL NETWORK 3

in different time steps. The dynamic graph embedding methods
are argued to obtain better representations than the traditional
static graph embedding because different snapshots share more
characteristics for representation [10], [11], [34], [54], [55].

An inevitable problem with the above methods is that
although they are able to learn better representation than the
static methods, their computational complexity is unacceptable
in real-world applications. For efficiency, researchers try to
update only a part of the embeddings of previous snapshots
instead of recalculating the current graph totally. TIMERS [52]
proposes an incremental SVD model for dynamic embedding,
which requires SVD only at the beginning and then incre-
mentally updates them according to the changes on the graph.
DNE [7] proposes a dynamic version of LINE, with only a
few gradient descent process to update the representation of
the current graph. DANE [22] proposes a network embedding
method in a dynamic environment that updates the node
embedding based on the change in both the adjacency and
the attribute matrix through matrix perturbation. DyRep [41]
ingests dynamic graph information in the form of association
and communication events over time and updates the node
representations as they appear in these events. DynWalks [15]
incorporates the temporal information with the traditional
DeepWalk to capture the evolving properties in dynamic
networks. It updates the node embeddings by sampling new
walks that are highly related to the changes on the graph.

C. Graph Neural Networks

GNNs, which extend deep neural networks to graph-
structured data, are a class of models recently advanced in
graph representation learning. Due to their convincing per-
formance and high interpretability, GNNs have been widely
used in many applications, such as natural language process-
ing [2], image classification [26], recommendation [46], and
fashion analysis [6]. The concept of GNN was first pro-
posed by Scarselli et al. [35]. Most GNN models follow a
similar scheme. In general, the nodes in GNNs aggregate
information from neighborhoods and update their embeddings
iteratively. Various kinds of GNNs have recently been pro-
posed. GCNs [18] perform graph convolutions for aggrega-
tion and update motivated by spectral convolution. Gated
GNNs (GGNNs) [23] aggregate and update in the form
of gated recurrent units (GRUs). Graph attention networks
(GATs) [42] incorporate the attention mechanism into the
aggregation step. GraphSAGE [13] considers from the spatial
perspective and introduces an inductive learning method. After
that, researchers focus on the effectiveness and efficiency of
the aggregation and updating part [5], [45], [48]. Most of
the existing GNN models are designed for the static graph
setting, in which nodes and edges are fixed. However, the
idea of representing nodes by the aggregation information of
neighboring nodes may also be suitable to the dynamic setting.

III. PRELIMINARIES

In this section, the traditional GCN is described in detail.
Then, the graph embedding problem is formulated from static
and dynamic styles.

Fig. 1. Illustration of how we deal with the addition/removal of nodes and
edges in a unified way (assume there are at most five nodes through all the
time steps). The top image shows the change in the graph structure; the bottom
image shows the corresponding change in the adjacency matrix. The red lines
denote the newly added edges; the red circles in the adjacency matrix denote
the newly emerging nonzero entries.

A. Static Graph Embedding
Consider a graph G = {V, E}, V = [v1, v2, . . . , vN], and

E = [e1, e2, . . . , eM] denote the node and edge set in G,
respectively. N is the number of nodes and M is the number
of edges. We denote the attributes of nodes as X , where xv

represents the attribute of node v in V . The attributes include
the node degree and other information based on different kinds
of datasets. The adjacency matrix is denoted as A. The static
graph embedding methods try to transform A (or A, X) to
node embedding matrix Z ∈ R

N×d

Z = Static_GE(A, X) (3)

where d is the dimension of the embeddings and is much
smaller than the number of nodes N . Each row of Z , zv

denotes the representation of node v. The goal of the static
graph embedding methods is to obtain a better zv that can
express both the structural and attribute features of node v
for downstream tasks, such as node classification and link
prediction.

B. Dynamic Graph Embedding
In contrast to the static graph embedding problem, dynamic

graph embedding introduces the time step in the formu-
lation. Henceforth, we use the superscript t to denote
the time index. In that case, we have a graph sequence
[G1,G2, . . . ,Gt , . . . ,GT], where Gt = {V t , E t } represents the
graph at time step t . T is the length of the sequences. V t and E t

are the set of nodes and edges in Gt , respectively. Without loss
of generality, we assume that the graph at any time is assumed
to be built on a common node set of cardinality N , with N
not lesser than the maximum number of nodes appearing in
a single time step. As shown in Fig. 1, the nonexistent node
v5 is treated as a dangling node with zero degree. If a node
is added/removed, its corresponding edges to other nodes are
added/removed. In this case, the changes in nodes can be seen
as the changes in edges, and there would be no need to change
the adjacency matrix at each time step. Therefore, the rest of
this work mainly talks about the changes in edges.

Given that the node feature matrix X is commonly stable,
the change in the topological structure is mainly discussed, i.e.,
adjacency matrix At = {0, 1}N×N in this work. Z t ∈ R

N×d

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

is the node embeddings’ matrix, and each row of which is a
d-dimensional embedding of a node in V t . The dynamic graph
embedding methods can be formulated as

Z t = Dyn_GE
(

A≤t , X
)

(4)

where A≤t denotes the adjacency matrices from the beginning
to time step t .

There are two different research topics in the area of
dynamic graph embedding. The first focuses on obtaining
more representative embeddings by considering previous graph
snapshots. Theoretically, the lower bound of the representation
capacity is that of the static graph embedding representation.
The second focuses on the efficiency of learning dynamic
graph representation, in which the static graph embedding
representation is the upper bound of the representation capac-
ity. In the present research, the main idea for reducing the
computation is to update the previous node embeddings based
on �At instead of relearning all the node embeddings at each
time step, which is formulated as

Z t = Dyn_GCN
(
�At−1, Z t−1) (5)

where the initial matrix embedding Z 0 is obtained by the static
graph embedding method, and any dynamic graph methods
can be applied. �At−1 = At − At−1 is the change in the graph
structure.

C. Graph Convolutional Network
GCN [13], [18], [42] are a class of models that extend the

neural networks to graphs. They take the adjacency matrix A
and the node features matrix X as inputs and output the node
embedding matrix Z ∈ R

n×d , where n is the number of nodes
and d is the dimensionality of node embeddings

Z = GCN(A, X). (6)

A GCN usually consists of multiple layers of graph convo-
lution to iteratively update the node embeddings. Specifically,
the node embeddings Z can be updated to Z ′ through a layer
of graph convolution as (the layer index is omitted for clarity)

Z ′ = GCONV(A, Z , W)

:= σ
(

ÂZ W
)

(7)

where Â denotes some normalization of the graph adjacency
matrix. For simplicity, Â = A + I is used in this work. I is
the identity matrix, W is a layer-specific transformation matrix,
and σ is a nonlinear activation such as ReLU.

The graph convolution is actually an embedding propaga-
tion operation motivated by spectral convolution. Here, 7 is
reformulated from the perspective of a single node v, which is
totally the same operation as the former equation. For notional
clarity, we denote the embedding of a node v is denoted as
zv , which is a row vector of Z . A node z first aggregates the
message propagated from neighbors and itself

av =
∑

u∈N (v)∪v

zu (8)

where av is the aggregated information of node v, and N (v)
is the set of its neighbors. Then it generates a new embedding

z ′
v based on the aggregated message as

z′
v = σ(av W). (9)

The initial node embeddings are input node features X .
After limited periods of graph convolution, the node embed-
dings will capture the information propagated from various
orders away and output the final node embedding Z .

IV. PROPOSED METHOD

In this section, a naive graph convolution network for
graph embedding is first presented. Then, two versions of
the proposed DyGCN model extending static GCN to the
dynamic setting are introduced. Finally, the proposed methods
are compared with other methods in terms of effectiveness and
efficiency.

A. Naive GCN for Dynamic Graph Embedding
A naive way to use GCN in this dynamic setting is through

its direct application at each snapshot to learn the new node
embeddings

Z t+1 = GCN
(

At+1, X
)
. (10)

However, this is costly and unnecessary given that the
change at each time step is usually trivial. In particular, there
is little difference between At+1 and At , or in other words,
that is, �At is sparse.

B. Dynamic GCN
In this section, the proposed DyGCN model is elaborated.

Fig. 2 shows the model framework; on the left is an example
of a dynamic graph, with an edge between nodes v1 and v2

emerging at time t . The change is propagated along the graph
to update the node embeddings in turn. v1 and v2 are denoted
as the 1st-order influenced nodes, being directly influenced
by the emerging edge. v3 and v4, as well as v5 and v6,
as the neighbors of the 1st-order influenced nodes v1 and v2,
are denoted as the 2nd-order influenced nodes. Accordingly,
kth-order influenced nodes refer to the nodes that are (k − 1)
hops away from the 1st-order influenced nodes. The set of the
kth-order influenced nodes at time step t is denoted as V t

k .
The proposed model is based on the embedding propagation

scheme of GCN [13], [18], [48]. The node embeddings are
updated according to the change in the aggregated message.
In the 1st-order propagation layer, the 1st-order influenced
nodes are updated; these are the nodes directly connected
to the changing edges. The updated embeddings are then
propagated to their neighbors, which in turn are updated in
the successive high-order propagation layers. Their design is
elaborated in the following.

1) First-Order Update: Here, the method of updating the
embeddings of the 1st-order influenced nodes is discussed.
First, let us review the aggregation and update scheme of
GCN in (8) and (9). A node first aggregates the message
propagated from its neighbors and itself by summation and
then updates the embeddings based on it. The aggregated
message determines the final embeddings. The change in the
topological structure influences the aggregated message and,
thus, the final node embeddings.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: DyGCN: EFFICIENT DYNAMIC GRAPH EMBEDDING WITH GRAPH CONVOLUTIONAL NETWORK 5

Fig. 2. Overview of DyGCN. An edge emerging at time t directly influences nodes v1 and v2, which are first updated by the first-order propagation. The
updated v1 and v2 then affect their neighbors v3, v4, v5, and v6, which are updated accordingly to the changed aggregated message. Then, the nodes further
away are updated in turn.

Formally, for a 1st-order influenced node v ∈ V t
1 , the change

in its aggregated information at time t can be calculated as1

�at
v =

∑
u∈N t+1(v)∪v

zt
u −

∑
u∈N t (v)∪v

zt
u (11)

where zt
v is the embedding of node v at time step t . N t(v)

and N t+1(v) denote the neighbors of node v at time t
and t + 1, respectively. It is actually the summation of the
embeddings of newly appearing neighbors that subtracts that
of the disappearing neighbors. For example, v1 in Fig. 2 has
a new neighbors v2, the change in its aggregated message
is thus the embedding of node v2, i.e., �at

1 = z2. If the
edge between v1 and v2 is removed instead, then v1 loses
the neighbor v2, in which case the change in its aggregated
message �at

1 = −z2.
The original graph convolution generates the node

embedding based on the aggregated message through a trans-
formation matrix. Drawing a lesson from this, an extra trans-
formation matrix W1 ∈ R

d×d is introduced to model the
influence of the change in the aggregated message on the
embeddings of the 1st-order influenced nodes. Specifically,
updating the node embedding based on the original node
embedding and the calculated change in the aggregated mes-
sage is a neural-network-based function, that is,

zt+1
v = σ

(
W0zt

v + W1�at
v

)
(12)

where W0 ∈ R
d×d is a transformation matrix for the original

embeddings.
2) High-Order Update: Because the 1st-order influenced

nodes have been updated, their changed embeddings are
propagated to their neighbors and in turn influence their
embeddings. Here, the update of the 2nd-order influenced
nodes is introduced, which can be easily generalized to the
neighbors further away.

More specifically, the aggregated message of the 2nd-order
influenced nodes is altered because the embeddings of some
neighbors (the 1st-order influenced nodes) have changed.
Different from the 1st-order influenced nodes influenced by the

1For notional clarity, we use z to denote the node embedding in dynamic
setting, distinguished from h in the section of “GCN.”

change in the topological structure, the 2nd-order influenced
nodes are influenced by the change in the embeddings of
their neighbors. Formally, we can calculate the change in the
aggregated message of a 2nd-order influenced node v ∈ V t

2
which can be calculated as

�at
v =

∑
u∈N t+1(v)∪v

(
zt+1

u − zt
u

)
. (13)

In essence, it is only the change in the 1st-order influenced
nodes in their neighborhood since the others’ embeddings
remain unchanged. In the example in Fig. 2, the node v3

aggregates the embeddings of its neighbor, the 1st-order influ-
enced node v1, whose embedding has been updated to zt+1

1 .
Accordingly, the change in its aggregated message is zt+1

1 −zt
1.

A similar update function to that in (12) is used to update
the embeddings of a 2nd-order influenced node v with another
transformation matrix W2 ∈ R

d×d

zt+1
v = σ

(
W0zt

v + W2�at
v

)
. (14)

The update of the 2nd-order influenced nodes is propagated
iteratively to their neighbors, which can be updated in the same
way. Formally, for the kth-order influenced nodes v ∈ V t

k , they
aggregate changed message from the (k-1)th-order influenced
nodes as in 13 and update itself

zt+1
v = σ

(
W0zt

v + Wk�at
v

)
(15)

where Wk ∈ R
d×d is the transformation matrix for the kth

propagation layer. Overall, the algorithm of DyGCN can be
summarized as Algorithm 1.

3) Processing of New Nodes: In contrast to the existing
methods [24], [32], the proposed method is capable of han-
dling the change (removal or addition) in nodes and edges
in a unified way rather than separately. Fig. 1 illustrates an
example. The new nodes emerging at time t can be considered
as isolated nodes with no neighbors before time t . In this
case, there is a need only to define a large enough adjacency
matrix A0 to ensure that its size is equal to or higher than
the maximum number of nodes through all the time steps. For
each new node at time step t , the embeddings are initialized as
the aggregation of its linked nodes at time step t . Therefore,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 DyGCN

Require: Gt = {V t , E t }, Gt+1 = {V t+1, E t+1}: the graph at
times t and t + 1;
Zt = {zt

v , v ∈ V t}: the node embeddings at time t ;
{W0, W1, W2, . . . , WK }: the transformation matrices.

Ensure: Z t+1 = {zt+1
v , v ∈ V t}, the node embeddings at time

t + 1.
1: // The update of first-order influenced nodes
2: for v ∈ V t

1 do
3: �at

v = ∑
u∈N t+1(v)∪v zt

u − ∑
u∈N t (v)∪v zt

u;
4: zt+1

v = σ(W0zt
v + W1�at

v);
5: end for
6: // The update of high-order influenced nodes
7: for k ∈ [2, . . . , K] do
8: for v ∈ V t

k do
9: �at

v = ∑
u∈N t+1(v)∪v (z

t+1
u − zt

u);
10: zt+1

v = σ(W0zt
v + Wk�at

v).
11: end for
12: end for

the addition or removal of nodes can be considered as that of
edges and can be processed in a unified way.

4) Matrix Form: The updating process is described in detail
from the perspective of the above embedding propagation
scheme. To provide a holistic view of the embedding prop-
agation and to facilitate batch implementation, the matrix
form of the update rule as in GCN [18] is given here,
denoted as a dynamic graph convolution. An extra subscript
is introduced to denote the layer index of dynamic graph
convolution in DyGCN. The above discussed 1st-order update
can be summarized in the following expression, called the
1st-order dynamic graph convolution:

Z t+1
1 = DYGCONV1

(
�At , Z t , W0, W1

)

:= σ
(
� Ât Z t W1 + Z t W0

)
(16)

where Z t+1
1 denotes the node embeddings after the 1st-order

update. Because this work aims only to update the 1st-order
influenced nodes, all the other nodes are masked in the above
updating process.

For the k-order influenced nodes (k > 2), their update
can be written as (17), called the k-order dynamic graph
convolution:

Z t+1
k = DYGCONVk

(
At+1,�Z t , Z t , W0, Wk

)

:= σ
(
Ât+1�Z t Wk + Z t W0

)
(17)

where �Z t = Z t+1
k−1−Z t+1

k−2. Z t+1
k denotes the node embeddings

after the k-order is updated. Similarly, all the nodes are masked
in the above updating process, except the k-order influenced
nodes. After K times of dynamic graph convolution, the final
node embeddings Z t+1 are obtained by updating all the k-order
nodes with the corresponding column of Z t+1

k .
5) Unsupervised Training: To learn meaningful and

predictive representations in a fully unsupervised setting,
a structure-preserving loss function is applied to the
updated node embeddings to tune the transformation matrices
{W0, W1, . . . , WK }. The training dataset is generated as a

sequence of graphs. We use a trained static graph embedding
method to get Z 0 and reconstruct the graph at other times
by a structure-preserving loss function as the training process.
The structure-preserving loss function encourages the nearby
nodes to have similar embeddings, while enforcing that the
embeddings of disparate nodes are highly distinct [13]

L = −
∑

t

∑
v

(
log

(
σ
(
z�
v zu

)) + log
(
1 − σ

(
z�
v zu−

)))
(18)

where u is a neighbor of v, u− is a random node, and σ is the
sigmoid function. The unsupervised loss aims to preserve the
topological information, which requires no extra supervision.
It can be replaced, or augmented, by a task-specific objective
(e.g., cross-entropy loss) for specific downstream tasks.

C. Spectral DyGCN

In this section, Spectral DyGCN is introduced to further
improve the above-mentioned high-order update mechanism
with acceptable time consumption.

The high-order update mechanism described above ignores
the nodes with orders higher than k. This means that the
changing information of the 1st-order nodes cannot be propa-
gated to all the nodes, which is reasonable because the nodes
that are far from the “center” of change are less likely to be
affected. However, this inevitably results in loss of accuracy.
To further emphasize accuracy, a method that considers the
global propagation of a graph is introduced here. However,
the method is difficult to carry out in the spatial form of
GCN given that spatial convolution initially considers each
node separately. Therefore, the graph propagation step in the
spectral domain is considered.

In the graph theory, the normalized graph Laplacian is
defined as L = In − D−(1/2) AD−(1/2), where In is the identity
matrix. The normalized Laplacian can be decomposed as
L = U�U−1, where � = diag([λ1, . . . , λn]) denotes its
eigenvalues. U is the n ×n square matrix whose i th column is
the eigenvector ui . The graph Fourier transform of a signal x
is defined as ẑ = U−1z, whereas the inverse transform is x =
U x̂ . Then the original network propagation D−(1/2) AD−(1/2)z
can be interpreted as x is first transformed into the spectral
space and scaled by the eigenvalues, and then transformed
back

z′ = D− 1
2 AD− 1

2 z = U(In − �)U−1z. (19)

It has been proven that the scale of eigenvalues controls
the propagation process partially or modularly [51]. For bet-
ter approximation of the dynamic propagation, the network
propagation of (19) is generalized into a learnable form

z′ = Ugθ(�)U−1z. (20)

As proven in [18], (20) can be well-approximated by a
truncated expansion in terms of the Chebyshev polynomials.
Thus, the graph propagation step can be formulated as

Z ′ ≈ Ws

(
IN + D− 1

2 AD− 1
2

)
Z (21)

where Ws is the parameter matrix after approximation.
Equation (21) is the exact formulation of the vanilla GCN

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: DyGCN: EFFICIENT DYNAMIC GRAPH EMBEDDING WITH GRAPH CONVOLUTIONAL NETWORK 7

Algorithm 2 Spectral DyGCN

Require: Gt = {V t , E t },Gt+1 = {V t+1, E t+1}: the graph at
times t and t + 1;
Zt = {zt

v , v ∈ V t}: the node embeddings at time t ;
{W0, W1, W2, . . . , WK }: the transformation matrices.

Ensure: Z t+1 = {zt+1
v , v ∈ V t}, the node embeddings at time

t + 1.
// The update of first-order influenced nodes
for v ∈ V t

1 do
�at

v = ∑
u∈N t+1(v)∪v zt

u − ∑
u∈N t (v)∪v zt

u;
zt+1
v = σ(W0zt

v + W1�at
v)

end for
// Propagating the changes to the whole graph
Z t+1 = Ws(IN + D− 1

2 AD− 1
2)Z t+1

TABLE I

TIME-CONSUMING ANALYSIS ON DIFFERENT COMPARED METHODS.
|E t | AND |V t | DENOTE THE NUMBER OF EDGES AND NODES OF

THE GRAPH, RESPECTIVELY. |�E t | AND |�V t | DENOTE THE

NUMBER OF CHANGING EDGES AND NODES, RESPECTIVELY.
d IS THE DIMENSIONALITY OF NODE EMBEDDINGS.

r , l, AND w ARE PARAMETERS OF THE RANDOM

WALK-BASED METHODS, I.E., THE NUMBER OF

WALKS, THE WALK LENGTH, AND THE WINDOW
SIZE CORRESPONDINGLY

model in the spectral domain. In this case, Spectral DyGCN
changes mainly the high-order update part of DyGCN to
propagate the changing information to the whole graph; the
algorithm is expressed as Algorithm 2.

D. Model Analysis

In this section, DyGCN is compared with other models
in terms of effectiveness and efficiency. Section V presents
the observed results. There are two main aspects of time
consumption problems in common dynamic graph embedding:
global update consumption and retraining time consumption.
Table I presents a summary of the comparison of different
methods.

1) DyGCN Versus Static Methods (e.g., GCN): The vanilla
GCN designed for the static setting consists of multiple layers
of graph convolution, which update the node embeddings
between two consecutive layers. In contrast, the proposed
DyGCN is designed for the dynamic setting, which consists
of multiple layers of dynamic graph convolution to update the
node embeddings between two consecutive time steps. The
1st-order and high-order updates can be approximately seen
as graph convolutions on the change in adjacency matrix �At

and node embeddings �Z t , respectively. The time complexity
of graph convolution comes mainly from the matrix multi-
plication of the adjacency matrix, node embedding matrix,
and transformation matrix. Satisfactorily, there is mostly 0 in

�At , and the number of nonzero entries in �At is equal to
the number of the 1st-order influenced nodes. Similarly, the
number of nonzero entries in �Z t at the k-order update is
equal to the number of k-order influenced nodes. Compared
with static GCN, which updates the embeddings of all the
nodes, what is updated in DyGCN V t

1 ∪· · ·∪V t
K is a subset of

the whole node set V t . Considering K is usually small (2 by
default), the number of updated nodes is much less than the
size of the whole node set; thus, considerable running time
is saved. In addition, the vanilla GCN is designed to learn
the parameters of each graph for a better convolution process,
which means that the model needs to be trained at every time
step. Thus, the training process is very time costly.

2) DyGCN Versus DNE and DynWalks: DNE [7] and
DynWalks [15] are the dynamic extended versions of LINE
and DeepWalk, respectively. Both consider how to update
only a few nodes according to the changes, which means that
they mainly solve the global update consumption problem.
However, these two methods update the node embeddings by
stochastic gradient descent; thus, the optimization progress
during update is necessary. In contrast, DyGCN does not
require optimization progress once the model has been trained,
making it much more time-saving.

3) DyGCN Versus GraphSAGE: In contrast to the
above-mentioned vanilla GCN, GraphSAGE also solves the
efficiency issues but at the cost of performance. When
new nodes emerge or the node embeddings are changed,
GraphSAGE simply recalculates the embedding of each
influenced node individually and simultaneously. However,
each node is influenced by its neighboring nodes, and its
change will influence its neighbors in turn. GraphSAGE is
unable to model this progressive influence among nodes,
nor can it capture the evolving pattern, which makes its
performance even worse. In conclusion, although Graph-
SAGE works quicker than DyGCN, it fails to capture
the influence of the change in neighboring nodes and the
evolving pattern on the graph. Hence, its performance in
dynamic graph embedding is considered worse than that
of DyGCN.

4) Spectral DyGCN Versus Other Methods: Spectral
DyGCN captures the dynamic propagation mechanism and
does not need to retrain any parameters during the node update,
thus decreasing the time consumption considerably. In contrast
to DyGCN, it updates the whole graph at each snapshot.
Consequently, Spectral DyGCN is more powerful but slightly
more costly than DyGCN.

V. EXPERIMENTS

In this section, the experiments are described in detail,
including the experiment setup, the comparison of the effec-
tiveness and efficiency of different models, the analysis of the
update order, and visualizations.

A. Experiment Setup

1) Datasets: In accordance with [7], [11], experiments were
carried out on the following three real-world datasets, the
statistics of which are shown in Table II.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II

STATISTICS OF THE THREE EVALUATION DATASETS (*-* DENOTES THE
NUMBER OF CHANGES ACROSS DIFFERENT SNAPSHOTS)

1) Autonomous Systems (AS)2 [21] is a communication
network from the border gateway protocol logs. The
dataset contains instances spanning from 1997 to 2000.
Sixty consecutive snapshots in the dataset were selected
for evaluation.

2) HEP-TH3 [8] is a dataset containing abstracts of
reports in High Energy Physics Theory conferences
from 1993 to 2003. A collaboration network was created
for reports published in each month. Sixty consecutive
snapshots in the dataset were selected.

3) Facebook4,5 [40] is a social network dataset on the
Facebook website. A subset of Amherst College was
selected. To generate a sequence of dynamic networks,
a subgraph from the original network was randomly
sampled as the initial networks. At each time step t ,
a fixed number of new nodes and edges was added.

To evaluate the ability of the models to predict future
changes on graphs based on past changes, the first half of
time steps was used as the training set and the second half of
time steps as the test set for the three datasets. Note that the
dynamic graphs have a certain order. The use of the earlier
graphs for validating the later graphs for training may lead
to the risk of data leakage. The last graph snapshot of the
training sets was used for validation. The reported results were
averaged over all the snapshots in the test set.

2) Compared Methods: The proposed DyGCN model was
compared with the following methods:

1) GraphSAGE [13] is an inductive GCN-based method
that can effectively learn the representation of new nodes
but cannot model the evolving pattern through the time
steps on dynamic graphs.

2) TIMERS [52] is a dynamic embedding model based on
incremental SVD with a theoretically instructed maxi-
mum error-bounded restart.

3) DNE [7] is an extension of the skip-gram-based methods
to the dynamic setting, with high efficiency.

4) DynWalks [15] is an extension of DeepWalk [31], which
can dynamically and efficiently learn embeddings based
on those selected, with high efficiency.

5) GCN [18], [19] is a prevalent static embedding model
and the static counterpart of the proposed DyGCN
model. In dynamic scenarios, each snapshot of the
dynamic graphs is regarded as a static graph, and GCN
is used to learn its node embeddings. The node degrees
are used as node features.

2https://snap.stanford.edu/data/as-733.html
3https://snap.stanford.edu/data/cit-HepTh.html
4http://people.maths.ox.ac.uk/porterm/data/facebook100.zip
5https://github.com/lundu28/DynamicNetworkEmbedding/tree/master/data

It is important to note that GCN is used as the static base
model to obtain the original embeddings at each time step
in DyGCN and to learn the embeddings at the next time
steps. We show the performance of GCN here aiming to
give the theoretical upper bound of performance of all the
dynamic graph embedding methods. However, the dynamic
methods update the embeddings based on the historical graph
embeddings. The updating process inevitably results in loss of
information. The dimension of node embeddings d is 100 for
all the methods. The maximum order of update K is set as
2 by default.

3) Tasks and Evaluation Metrics: Experiments were carried
out, and the methods were compared on their performance of
the following two tasks:

1) Link Prediction: This aims to test how well the learned
embeddings can predict unobserved edges. The edge
proximity is measured based on the cosine distance
between the embeddings of pairs of nodes. To achieve
this aim, the models are evaluated on their ability to
predict future links at t + 1 time step using embeddings
learned at t time step. The area under the ROC curve
(AUC) and F1-score are used as the evaluation metrics
for this task. As discussed in II-B, DyGCN is not
designed for link prediction. However, link prediction is
a traditional task in evaluating the quality of the learned
node embedding.

2) Node Classification: To test the classification ability of
the embeddings, logistic regression is used as the clas-
sifier, with the node embeddings as inputs. At the initial
time step, Z 0 is used as the training data for the logistic
regression parameters, which are kept unchanged in the
following time step. Accuracy is the evaluation metric
of node classification at each time step. We summarize
the predicted result of all the nodes at each time using
the updating embeddings. The logistic regression uses
L-BFGS optimization with l2 regularization; the toler-
ance for stopping criteria is 0.0001.

B. Results and Analysis

Table III shows the link prediction performance and running
time (seconds) of the evaluation at each time step for the three
datasets. Fig. 3 shows the node classification performance for
the Facebook dataset. Note that GCN, which achieved the best
performance and consumed the longest running time, is the
base model of DyGCN. Its performance was the upper bound
of DyGCN in theory.

Considering both Table III and Fig. 3, GraphSAGE showed
the worst performance in all the cases. This result was
expected because the method was originally designed for
static embedding and failed to capture the changing patterns
during the time steps, as well as the progressive influence
from its neighbors. However, GraphSAGE was the fastest
among the methods due to incremental computation; i.e.,
each new node needed only to aggregate information from its
neighbors for representation; its neighboring nodes would not
be affected. TIMERS achieved a moderate performance with a
little running time. It updated only a part of the nodes at each

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: DyGCN: EFFICIENT DYNAMIC GRAPH EMBEDDING WITH GRAPH CONVOLUTIONAL NETWORK 9

TABLE III

COMPARISON OF THE LINK PREDICTION PERFORMANCE AND RUNNING TIME (SECONDS) OF DIFFERENT METHODS. THE BEST PERFORMANCE AMONG
DYNAMIC EMBEDDING METHODS IS HIGHLIGHTED. GCN IS A STATIC METHOD THAT PERFORMS THE UPPER BOUND IN THEORY

Fig. 3. Performance comparison of the node classification task on the
Facebook dataset along with running time (seconds).

time step and did not require any optimization progress during
updating. The performance was moderate because TIMERS is
based on the matrix perturbation theory, which works only
when the adjacency matrix does not change considerably at
every time step [52]. Both DNE and DynWalks need SGD for
updating the nodes; thus, they consumed much more time than
the other methods. DNE achieved a better performance than
TIMERS for the HEP-TH and Facebook datasets but at the
cost of much higher time consumption. For the AS dataset,
DNE was not obviously better than TIMERS.

From our perspective, the graph on the AS dataset was much
sparser than the other datasets, and an adding edge would
not significantly affect the adjacency matrix; thus, TIMERS
obtained comparatively better results for AS. DyWalks
achieved a better performance than DNE, being mainly moti-
vated by incremental skip-gram, which is well-designed for
efficiency and effectiveness. The method updated only the
nodes that could be reached by random walk with the start
of the 1st-order nodes. Note that GCN is a transductive
graph embedding method, while GraphSAGE is an inductive
graph embedding method. When the topological structure
of the graph changes, the parameters should be relearned.
Therefore, it is unable to learn graph embeddings efficiently
in dynamic setting. However, GraphSAGE is able to calculate
the graph embeddings when the graph structure changes, but
its performance in dynamic settings cannot be guaranteed.

The proposed DyGCN consistently yielded the best
performance in all the cases with a limited time cost, indicating
its superiority in both accuracy and efficiency. It achieved a
comparative performance with DynWalks, and its running time
was the same as that of GraphSAGE and TIMERS. Compared
with the base model GCN, DyGCN achieved a competitive

performance in both link prediction and node classification
with a much shorter running time. Quantitatively, DyGCN was
692×, 759×, and 4110× faster than its static counterpart GCN
for the AS, HEP-TH, and Facebook datasets, respectively.

This was reasonable because the number of updated nodes
was much smaller than the number of all the nodes, and there
was no need for a training process during the update. Spectral
DyGCN performed better than DyGCN and had an acceptable
running time compared with the other methods. This made
sense given that Spectral DyGCN updated the whole graph
instead of only a part of nodes, as in DyGCN. Note that GCN,
which achieved the best performance and had the longest
running time, is the base model of DyGCN. Its performance
was the upper bound of DyGCN in theory. In summary, the
experimental results verified the effectiveness and efficiency of
the proposed DyGCN, which achieved the most comparable
results to GCN with much less time consumption.

C. Long-Term Dynamic Embedding
To test the robustness of the proposed model in case of

cumulative errors in long-term embedding, the models were
compared on their performance of the long-term tasks of link
prediction and node classification. In the long-term setting of
these two tasks, only the initial node embeddings at t = 0 were
given. The calculated node embeddings at t − 1 were used as
the initial node embeddings at time step t . Thus, the node
embeddings at each time step t varying from 1 to 30 were
learned, given only the node embedding at t = 0.

Fig. 4 shows the results at every step, which indicate
that GraphSAGE achieved a comparatively worst performance
among all the methods because it did not capture any evolving
pattern of dynamic changes. TIMERS achieved high accu-
racy for the AS dataset because, as discussed above, the
method is suitable for a sparser graph, such as that of the
AS dataset. TIMERS, GraphSAGE, and DyGCN, which do
not require optimization progress, were stabler through all
the time steps compared with the other methods. This may
be due to the unstable randomness caused by the optimiza-
tion progress. The performance of all the methods clearly
decreased with the increase in time steps. However, it is
interesting to note that the performance tended to have an
unpredictable vibration over 20 ∼ 30 time steps for both
the AS and Facebook datasets, whereas there is not too big
vibration in HEP-TH. The present authors believe that the
sparser the graph, the harder it is to represent each node

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Performance comparison of the long-term link prediction task w.r.t. F1-score on AS dataset, HEP-TH dataset, and node classification task on the
Facebook dataset. (a) AS. (b) HEP-TH. (c) Facebook.

Fig. 5. Performance and running time w.r.t. different orders of update K . (a) AS. (b) HEP-TH. (c) Facebook.

accurately. The proposed DyGCN and DynWalks consistently
outperformed the other methods for all the datasets. From the
holistic perspective, DyGCN performed better than DynWalks,
especially when it was a long time away from initialization.
Moreover, the performance of DynWalks was observed to
decrease sharply for the AS dataset, whereas that of DyGCN
was much stabler. Overall, conclusion can be drawn that
DyGCN has a robust performance in long-term tasks, which
is very important in real-world applications.

D. Update Order

The maximum updated order K was varied in the range
of {1, 2, 3, 4} to determine how it would affect the model
accuracy and efficiency. Fig. 5 shows a summary of the experi-
mental results; the top image presents the findings for DyGCN,
and the bottom image shows the time consumption. With the
increase in update order, the performance first increased and
then decreased sharply after K > 2 for the AS and Facebook
datasets. This suggests that the change mostly affects the
1st- and 2nd-order influenced nodes, whereas the influence on
nodes further away is relatively negligible. Propagating the

change to further nodes and updating them is superfluous and
can deteriorate the performance. However, both the AUC and
the F1-score were relatively high up to K = 3 for HEP-TH,
whose graph was much denser and edge changes much fewer
compared with the other datasets. The reason for this may
be that HEP-TH had much less 1st-order nodes and much
more 2nd- and (especially) 3rd-order nodes than the other
datasets. Thus, when DyGCN is applied to a graph with less
1st-order and more 3rd-order nodes, a bigger update order
may be necessary. In addition, the increase in K resulted in
higher time consumption, especially after K > 3. This is
reasonable because the number of influenced nodes increases
exponentially with the increase in the update order. When
K > 3, the time consumption was even higher than that of
Spectral DyGCN. Therefore, it is better to update only the
1st- and 2nd-order influenced nodes, for the sake of both
effectiveness and efficiency.

E. Dimensionality of Hidden Vectors

The models were tested with embedding dimensionality of
latent vector d = 50, 75, 100, and 125. As shown in Fig. 6,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: DyGCN: EFFICIENT DYNAMIC GRAPH EMBEDDING WITH GRAPH CONVOLUTIONAL NETWORK 11

Fig. 6. Performance of DyGCN of different hidden vector sizes d in the three datasets. (a) AS. (b) HEP-TH. (c) Facebook.

Fig. 7. Visualization of graph kernel matrix Wk of DyGCN in the AS dataset.

DyGCN had a relatively stable performance with varying
dimensionalities for all the datasets. When the embedding
dimensionality was high, DyGCN tended to be overfitting.
DyGCN achieved the best performance with d = 100 for all
the three datasets.

F. Graph Convolution Kernel Visualization
To better understand the function of the graph convolution

operators, the weight of graph convolution kernels Wk was
visualized. For the AS dataset for example, as shown in Fig. 7,
W1 is the transform matrix between the nodes that have an
additional link at this time step, whereas W2, W3, and W4

are the transform matrices of the higher order update. W1

and W2 have obvious activated parts, whereas most parts in
W3 and W4 are not well-activated. This suggests that W1

and W2 capture a clear pattern during optimization, whereas
W3 and W4 seem to have difficulty in learning a distinct
node propagation pattern. This may be another explanation
of why DyGCN obtained the best performance with only the
1st- and 2nd-order updates. Besides, W2 has high weights
in the diagonal line, which means that the nodes tend to
pay more attention to their original information than the
neighborhood information during their 2nd-order propagation.
This makes sense because the influence of neighborhood
information should be smaller than that of the 1st-order
update.

VI. CONCLUSION

This work focused on how to extend GCN models to learn-
ing node embeddings efficiently in a dynamic graph setting.
The proposed DyGCN naturally generalizes the embedding
propagation scheme of GCN to the dynamic setting in an
efficient manner, by propagating the change along the graph
to update the node embeddings. The most affected nodes are
updated first, and then their changes are propagated to further
nodes, which in turn are updated. Two different methods
of updating are proposed: high-order update and spectral
propagation. The experimental results show the efficiency and

effectiveness of DyGCN and Spectral DyGCN compared with
other methods and their static counterpart (GCN).

REFERENCES

[1] A. T. Balaban, “Applications of graph theory in chemistry,” J. Chem.
Inf. Comput. Sci., vol. 25, no. 3, pp. 334–343, 1985.

[2] D. Beck, G. Haffari, and T. Cohn, “Graph-to-sequence learning using
gated graph neural networks,” 2018, arXiv:1806.09835.

[3] M. Belkin and P. Niyogi, “Laplacian Eigenmaps and spectral techniques
for embedding and clustering,” in Proc. NIPS, 2002, pp. 585–591.

[4] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning graph representations
with global structural information,” in Proc. 24th ACM Int. Conf. Inf.
Knowl. Manag., Oct. 2015, pp. 891–900.

[5] J. Chen, T. Ma, and C. Xiao, “FastGCN: Fast learning with graph con-
volutional networks via importance sampling,” 2018, arXiv:1801.10247.

[6] Z. Cui, Z. Li, S. Wu, X.-Y. Zhang, and L. Wang, “Dressing as a
whole: Outfit compatibility learning based on node-wise graph neural
networks,” in Proc. World Wide Web Conf., May 2019, pp. 307–317.

[7] L. Du, Y. Wang, G. Song, Z. Lu, and J. Wang, “Dynamic net-
work embedding: An extended approach for skip-gram based network
embedding,” in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018,
pp. 2086–2092.

[8] J. Gehrke, P. Ginsparg, and J. Kleinberg, “Overview of the 2003
KDD cup,” ACM SIGKDD Exp. Newslett., vol. 5, no. 2, pp. 149–151,
Dec. 2003.

[9] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in
graph domains,” in Proc. IEEE Int. Joint Conf. Neural Netw., May 2005,
pp. 729–734.

[10] P. Goyal, S. R. Chhetri, and A. Canedo, “Dyngraph2Vec: Capturing net-
work dynamics using dynamic graph representation learning,” Knowl.-
Based Syst., vol. 187, Jan. 2020, Art. no. 104816.

[11] P. Goyal, N. Kamra, X. He, and Y. Liu, “DynGEM: Deep embedding
method for dynamic graphs,” 2018, arXiv:1805.11273.

[12] A. Grover and J. Leskovec, “Node2Vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2016, pp. 855–864.

[13] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. NIPS, 2017, pp. 1024–1034.

[14] C. T. Have and L. J. Jensen, “Are graph databases ready for bioinfor-
matics?” Bioinfmatics, vol. 29, no. 24, p. 3107, 2013.

[15] C. Hou, H. Zhang, K. Tang, and S. He, “DynWalks: Global topology
and recent changes awareness dynamic network embedding,” 2019,
arXiv:1907.11968.

[16] Z. Huang, W. Chung, and H. Chen, “A graph model for E-commerce
recommender systems,” J. Amer. Soc. Inf. Sci. Technol., vol. 55, no. 3,
pp. 259–274, 2004.

[17] S. M. Kazemi et al., “Representation learning for dynamic graphs: A
survey,” J. Mach. Learn. Res., vol. 21, no. 70, pp. 1–73, 2020.

[18] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[19] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” in Proc.
NIPS Workshop, 2016, pp. 1–3.

[20] J. B. Kruskal, Multidimensional Scaling, vol. 11. Newbury Park, CA,
USA: SAGE, 1978.

[21] J. Leskovec and A. Krevl, “SNAP datasets: Stanford large network
dataset collection,” SNAP Group, Stanford Univ., Stanford, CA, USA,
Tech. Rep., 2014. [Online]. Available: http://snap.stanford.edu/data

[22] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “Attributed network
embedding for learning in a dynamic environment,” in Proc. ACM Conf.
Inf. Knowl. Manag., Nov. 2017, pp. 387–396.

[23] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” 2015, arXiv:1511.05493.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[24] J. Li, K. Cheng, L. Wu, and H. Liu, “Streaming link prediction on
dynamic attributed networks,” in Proc. 11th ACM Int. Conf. Web Search
Data Mining, Feb. 2018, pp. 369–377.

[25] F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional
networks,” Pattern Recognit., vol. 97, Jan. 2020, Art. no. 107000.

[26] K. Marino, R. Salakhutdinov, and A. Gupta, “The more you know:
Using knowledge graphs for image classification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 20–28.

[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

[28] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distrib-
uted representations of words and phrases and their compositionality,”
in Proc. NIPS, 2013, pp. 3111–3119.

[29] S. A. Myers, A. Sharma, P. Gupta, and J. Lin, “Information network
or social network? The structure of the Twitter follow graph,” in Proc.
23rd Int. Conf. World Wide Web, 2014, pp. 493–498.

[30] A. Pareja et al., “EvolveGCN: Evolving graph convolutional networks
for dynamic graphs,” 2019, arXiv:1902.10191.

[31] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2014, pp. 701–710.

[32] B. Paassen, D. Grattarola, D. Zambon, C. Alippi, and B. E. Hammer,
“Graph edit networks,” in Proc. ICLR, 2020, pp. 1–34.

[33] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
Dec. 2000.

[34] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “DySAT: Deep
neural representation learning on dynamic graphs via self-attention
networks,” in Proc. 13th Int. Conf. Web Search Data Mining, Jan. 2020,
pp. 519–527.

[35] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2008.

[36] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” in
Proc. Int. Conf. Neural Inf. Process., 2018, pp. 362–373.

[37] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
Large-scale information network embedding,” in Proc. 24th Int. Conf.
World Wide Web, May 2015, pp. 1067–1077.

[38] L. Tang, H. Liu, J. Zhang, and Z. Nazeri, “Community evolution in
dynamic multi-mode networks,” in Proc. 14th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2008, pp. 677–685.

[39] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, Dec. 2002.

[40] A. L. Traud, P. J. Mucha, and M. A. Porter, “Social structure of
Facebook networks,” Phys. A, Stat. Mech. Appl., vol. 19, pp. 4165–4180,
Feb. 2012.

[41] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “DyRep: Learning
representations over dynamic graphs,” in Proc. 7th Int. Conf. Learn.
Represent. (ICLR), New Orleans, LA, USA, 2019.

[42] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.

[43] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 1225–1234.

[44] S. Wold, K. Esbensen, and P. Geladi, “Principal component analy-
sis,” Chemometrics Intell. Lab. Syst., vol. 2, nos. 1–3, pp. 37–52,
1987.

[45] F. Wu, T. Zhang, A. H. de Souza, Jr., C. Fifty, T. Yu, and
K. Q. Weinberger, “Simplifying graph convolutional networks,” 2019,
arXiv:1902.07153.

[46] S. Wu, Y. Tang, Y. Zhu, X. Xie, and T. Tan, “Session-based rec-
ommendation with graph neural networks,” in Proc. AAAI, 2018,
pp. 1–10.

[47] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” 2019, arXiv:1901.00596.

[48] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” 2018, arXiv:1810.00826.

[49] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” 2017,
arXiv:1709.04875.

[50] W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang,
“NetWalk: A flexible deep embedding approach for anomaly detection
in dynamic networks,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2018, pp. 2672–2681.

[51] J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding, “ProNE: Fast and
scalable network representation learning,” in Proc. 28th Int. Joint Conf.
Artif. Intell., Aug. 2019, pp. 4278–4284.

[52] Z. Zhang, P. Cui, J. Pei, X. Wang, and W. Zhu, “Timers: Error-bounded
SVD restart on dynamic networks,” in Proc. 32nd AAAI Conf. Artif.
Intell., 2018, pp. 1–10.

[53] Z. Jie, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun, “Graph neural net-
works: A review of methods and applications,” 2018, arXiv:1812.08434.

[54] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network
embedding by modeling triadic closure process,” in Proc. AAAI, 2018,
pp. 1–8.

[55] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, “Embed-
ding temporal network via neighborhood formation,” in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 2857–2866.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 03,2022 at 06:50:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

