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Abstract—With the rapid growth of various applications on the Internet, recommender systems become fundamental for helping
users alleviate the problem of information overload. Since contextual information is a significant factor in modeling the user
behavior, various context-aware recommendation methods have been proposed recently. The state-of-the-art context modeling
methods usually treat contexts as certain dimensions similar to those of users and items, and capture relevances between
contexts and users/items. However, such kind of relevance has much difficulty in explanation, e.g., it is not intuitive that a user
is more relevant to weekday than weekend. Some works on multi-domain relation prediction can also be used for the context-
aware recommendation, but they have limitations in generating recommendations under a large amount of contextual information.
Motivated by recent works in natural language processing, we represent each context value with a latent vector, and model the
contextual information as a semantic operation on the user and item. Besides, we use the contextual operating tensor to capture
the common semantic effects of contexts. For the contextual information of each user-item interaction, the contextual operation
can be modeled by multiplying the operating tensor with latent vectors of contexts. Experimental results show that the proposed
Context Operating Tensor (COT) model yields significant improvements over the competitive compared methods on three typical
datasets. From the experimental results of COT, we also obtain some interesting observations which follow our intuition. For
example, contexts have different importances in operating characteristics of users/items, and the potential relation among context
values can be revealed by representation vectors of these values.

Index Terms—Recommender systems, Context-aware, Context representation, Contextual operation
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1 INTRODUCTION

With the rapid growth of available information on the
Internet, users are getting in trouble with the problem
of information overload. Recommender systems have
become an important tool which can help users to
select the information of interest in many web appli-
cations such as social networks, e-commerce, online
reading and so on. Nowadays, with the enhanced
ability of systems in collecting information, a great
amount of contextual information has been collected.
The contextual information describes the situation of
behavior, such as location, time, weather, companion
and so on. The user behavior tends to change signif-
icantly under these kinds of contexts. For instance, a
man may like to watch cartoons when he is with his
children, but he may like to watch romantic movies
with his wife.

The survey of [1] indicates that contexts of recom-
mender systems specify the contextual information
associated with a recommendation application, and
provides two kinds of examples which are attributes
associated with users or items and attributes associat-
ed with user-item interactions. For instance, contexts
of a user, such as gender, age and occupation, can
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profile this entity, and contexts of a user-item rat-
ing, such as time, location, companion and platform,
describe situations of this interaction. The work [2]
indicates that context-aware methods are more gen-
eral than attribute-aware methods [3][4], which only
take additional information about users and items
into account. As shown in Fig. 1, generally, contex-
tual information includes interaction contexts, which
describe the interaction situations, and entity contexts,
which can identify user/item characteristics. Here, we
focus on modeling the general contextual information
associated with not only users/items but also user-
item interactions.

Due to the fundamental effect of contextual in-
formation in recommender systems, many context
modeling methods have been developed. Some works
[2][5] incorporate contextual information in a factor-
ization model via treating contexts as one or several
dimensions which have similar properties as dimen-
sions of the user and the item. Most of these methods
calculate the relevance between contexts and entities,
but such kind of relevance is not always reasonable
[6]. For example, it is not intuitive that a user is more
relevant to weekday than weedend. In 2014, Shi et al.
propose a novel CARS2 model [6] which provides
each user/item with not only a latent vector but also
a context-aware representation. Due to the effective-
ness of additional context-aware representations, this
approach provides a new way for building context-
aware recommender systems. However, using a dis-
tinct vector to represent contexts of each interaction,
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User contexts (attributes): 
Gender, Age, Occupation, Label, Tweets...

Item contexts (attributes): 
Title, Length, Genre, ReleaseYear...

User-item 
interaction 
contexts: 
Time, 
Location, 
Companion, 
Platform
...

Fig. 1. Contextual information in recommender sys-
tems contains user contexts, item contexts and user-
item interaction contexts. User contexts or item con-
texts are attributes associated with the corresponding
entity, and interaction contexts describe situations of
the user-item interaction.

CARS2 has the problem in confronting with abundant
contextual information in real applications. Besides,
since CARS2 can only model the categorical context,
the numerical context should be categorized at first.

Moreover, some works on multi-domain relation
prediction [7][8] can also be employed for context-
aware recommender systems. These methods incor-
porate the transfer matrix to map latent vectors of
entities from one domain to another. In context-aware
recommendation systems, using the transfer matrix,
latent vectors of users/items can be mapped from one
contextual situation to another. However, similar to
the limitation of CARS2 [6], using a transfer matrix for
each specific contextual information, these methods
have the difficulty in dealing with a large amount of
contextual information.

To overcome the shortages of the existing methods
mentioned above, we propose a novel context mod-
eling method Contextual Operating Tensor model,
named COT, which is motivated by the recent work
of semantic compositionality in Natural Language
Processing (NLP). Continuous vector representations
of words have a long history in NLP, and become even
popular since Mikolov et al. [9] provide an efficient
implementation word2vec. Inspired by the powerful
ability in describing latent properties of words, in
recommender systems, using a vector representation
of each context value seems a good solution to ex-
amine the effect of contexts on user-item interactions.
Different from the one-hot representation of contexts
in Factorization Machine (FM) [10] and Multiverse
Recommendation [5], the distributed representation
inferred from all contexts has more powerful ability
in illustrating the operation properties of contexts.
Moreover, in the research direction of sentence sen-
timent detection, a noun has semantic information
as a latent vector, and an adjective has semantic
operation on nouns as an operating matrix [11][12].

For instance, in the phrase “excellent product”, the
noun “product” is represented by a latent vector, and
the adjective “excellent” is associated with a semantic
operating matrix which can operate the noun vector
of “product”. Thus, multiplying the operating matrix
with the latent vector, the phrase “excellent product”
has a new latent vector which shows not only the
latent properties of the “product” but also a positive
attitude to the “product”. We assume that contexts
in recommendation systems have a similar property
of adjectives and can operate latent characteristics of
users and items. Then, new latent representations of
entities can show not only characteristics of original
entities but also new proprieties under a specific con-
textual situation. For instance, a man has his original
latent interests. When this man is with children, this
companion context operates his latent interests and
he may like to watch cartoons with these children. Be-
sides, in real recommendation systems, some contexts
have very similar effects. For instance, both weekend
and being at home may make you prefer to read
novels. Inspired by [13] in simplifying the Matrix-
Vector operation, we use contextual operating tensors
to capture the common effects of contexts.

The proposed Context Operating Tensor (COT)
method learns representation vectors of context values
and uses contextual operations to capture the seman-
tic operations of the contextual information. We pro-
vide a strategy in embedding each context value into
a latent representation, no matter which domain the
value belongs to. For each user-item interaction event,
we use contextual operating matrices to represent
the semantic operations of these contexts, and em-
ploy contextual operating tensors to capture common
effects of contexts. Then, the operating matrix can
be generated by multiplying latent representations of
contexts with the operating tensor.

The main contributions are listed as follows:

• To describe the operation ability of contexts, we
embed each context value with a latent represen-
tation, and model the contextual information as
semantic operations on users and items. Context
representation and contextual operation present
a novel perspective of context modeling.

• We use the contextual operating tensor to capture
the common semantic effects of contexts. For
each interaction, the contextual operation can be
generated from the multiplication of operating
tensor and latent vectors of contexts.

• Experimental results on three real datasets show
that COT is effective and evidently outperforms
the state-of-the-arts. Besides, context representa-
tions can reveal the latent relation among these
context values, and context weights can indicate
different importances of context values in oper-
ating latent vectors of users and items.

The rest of the paper is organized as follows: we
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review some related works in Section 2. Then, we
introduce COT in Section 3, including context rep-
resentation, contextual operating matrix, contextual
operating tensor and the optimization algorithm. In
Section 4, we report and analyze experimental results
of COT and state-of-the-art methods on real datasets.
Finally, we conclude this work and discuss the future
research direction.

2 RELATED WORK

In this section, we review some related works on
matrix factorization based methods and state-of-the-
art context-aware models. In addition, we introduce
some recent works on representation learning, which
motivate this work.

2.1 Matrix Factorization
Matrix Factorization (MF) based methods [14][15][16]
have become a state-of-the-art approach to recom-
mender systems. The basic objective of MF is to fac-
torize a user-item rating matrix into two low rank ma-
trices, each of which represents latent factors of users
or items. With the multiplication of two factorized
matrices, the original matrix can be reconstructed, and
rating predictions are obtained accordingly. Due to
the effectiveness of MF, the MF based methods have
been studied extensively. SVD++ [17], which com-
bines neighborhood models with latent factor models
in one prediction function, is one of the most popular
models for recommender systems.

There are some MF based methods which are de-
signed for a specific kind of contexts, such as the
time factor and entity attributes. Koren proposes a
model named timeSVD++ [18], which is one of the
most effective models for time-aware recommenda-
tion. Xiong et al. [19] add the time factor as a new
dimension to the rating matrix, and factorize a three-
dimensional tensor. Attribute-aware MF is another
important direction of MF extensions. The attribute-
aware recommender systems [3][4][20] extend the
conventional MF model to handle the user and item
attributes.

2.2 Context-aware Recommender Systems
Contextual information has been proved to be useful
for recommender systems [1][21], and various context-
aware recommendation methods have been devel-
oped. According to the survey of [1], these methods
can be categorized into pre-filtering, post-filtering and
context modeling. Employing the pre-filtering or post-
filtering strategy, conventional methods [22][23][24]
utilize the contextual information to drive data selec-
tion or adjust the resulting set. Baltrunas et al. use the
item-splitting for the contextual pre-filtering process
[23]. Li et al. view a context as a dynamic feature
of items and filter out the items that do not match

a specific context [25]. Some works [26][27] have
applied tree-based partition with matrix factorization,
which also fall into the pre-filtering category. Zhong
et al. propose RPMF [26], which applies tree based
random partition to split the user-item-rating matrix
by grouping users and items with similar contexts,
and then applies matrix factorization on each node of
the tree. To deal with contexts and social network in
recommender systems, Liu et al. propose SoCo [27],
which has the similar idea with RPMF but applies
matrix factorization only on the leaf nodes. These
pre-filtering and post-filtering methods may work in
practice, but they require supervision and fine-tuning
in all steps of recommendation [2].

The context modeling methods, using the contex-
tual information directly in the model, have become
popular recently. These methods focus on integrating
the contextual information with the user-item rating
matrix and construct factorization models. The work
of [22] proposes a multidimensional recommendation
model based on the cube of multiple dimensions
such as the user dimension, the item dimension and
dimensions for all contexts. Multiverse recommenda-
tion [5] represents the rating matrix with contextual
information as a user-item-context tensor, which is
factorized with Tucker decomposition [28]. Multiverse
recommendation has proved performing better than
the conventional contextual pre-filtering and post-
filtering models. Rendle et al. [2] apply Factorization
Machine (FM) for the context-aware recommendation.
This method can handle different kinds of contextual
information, and factorizes pairwise context relation
through generating feature vectors in a proper way.
However, since these methods treat contexts as one or
several dimensions as those of the user and item, the
relation between an entity and a context value is not
intuitive and has difficulty in explanation. Recently,
Shi et al. propose a novel CARS2 [6] model which
provides each user/item with a latent factor and
a context-aware representation. Similar to HeteroMF
[8], CARS2 provides the contextual information of
each interaction with a distinct vector, but is not
suitable for numerical contexts and abundant contexts
in real-world applications.

2.3 Multi-domain Relation Prediction
Multi-domain relation prediction can also be used
for the context-aware recommendation. For relation
learning in multiple domains [29][30][31], Collective
Matrix Factorization (CMF) factorizes the user-item-
rating matrix in each domain, and latent vectors of
users/items are shared among these domains. How-
ever, sharing the same latent vector among different
domains makes the model unable to well formulate
the properties of entities under different domains.
Then, Zhang et al. [7] treat user attributes as priors
for user latent vectors, and employ a transfer ma-
trix to generate latent vectors from the general ones.
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Similarly, Jamali et al. propose Heterogeneous Matrix
Factorization (HeteroMF), which generates context-
specific latent vectors using a general latent vector
for the entity and context dependent transfer matrices
[8]. However, for the context-aware recommendation,
with a transfer matrix for contexts in each interaction
event, these methods have to estimate numerous ma-
trices for a large amount of contextual information.

2.4 Representation Learning

Here, we introduce several most significant works
in NLP, which motivate this work. For continuous
vectors of words, the neural network language model
[32] is a popular and classic work, which learns a vec-
tor representation of each word and proposes statis-
tic language models using artificial neural networks.
Mikolov et al. [9] propose neural net language models
for computing continuous vector representations of
words and provide the tool word2vec for an efficient
implementation. For sentence sentiment detection, the
work [11] introduces a presentation of adjective-noun
phrase, where a noun has semantic information as a
latent vector and an adjective has semantic operation
on nouns as an operating matrix, then the adjective-
noun composition can be represented by multiplying
the adjective matrix with the noun vector. Further,
Socher et al. propose a model [12] in which each
word or longer phrase has a Matrix-Vector repre-
sentation. The vector captures the meaning of the
constituent and the matrix describes how it modi-
fies the meaning of the other combined word. Since
each word has a Matrix-Vector representation, the
number of parameters becomes very large with an
increasing size of vocabulary. Then, Socher et al. [13]
propose a global tensor-based composition function
for all combinations, and improve the performance of
sentence sentiment detection over the Matrix-Vector
representation [12].

3 CONTEXT OPERATING TENSOR MODEL

In this section, we present a novel model, named Con-
textual Operating Tensor (COT), for the context-aware
recommendation. We introduce the notations and the
fundamental concept of context representation at first,
and then present the COT model thoroughly. Finally
we describe the process of parameter inference, and
the optimization algorithm based on stochastic gradi-
ent decent.

3.1 Notations

In typical recommender systems, there is a user set
U and an item set V . u ∈ Rd and v ∈ Rd are
latent vectors of user u and item v, where d is the
dimensionality. There are multiple contexts associated
with users, items and user-item interactions, such as

age, gender, occupation, releaseY ear, director, genre,
theater, time, companion, etc.

In this work, we divide these multiple contexts
into user contexts CU1 , CU2 , ...,, item contexts CV1 , CV1 , ...
and interaction contexts CI1 , CI1 , .... User contexts and
item contexts indicate the attribute information as-
sociated with the user and item, while interaction
contexts describe the situations of user-item interac-
tion. For instance, in the scenario of a movie recom-
mendation system, item contexts contain title, length,
releaseY ear, director and genre, and interaction con-
texts contain theater, time and companion, etc.

A specific context value cim is a variable of con-
text CIm. Context values of a specific user u, cu =
{cu1 , cu2 , ...}, are called user context combination, and
context values of a specific item v, cv = {cv1, cv2, ...},
are named item context combination. The interaction
contexts of a user-item rating are named interaction
context combination and can be represented as ci =
{ci1, ci2, ...}. The rating that user u provides to item
v under contextual information c can be written as
ru,v,c. The general contextual information c associated
with rating ru,v,c is composed of user context combi-
nation cu, item context combination cv and interaction
context combination ci.

The representation vector of a context value cim is
denoted as hi

m ∈ Rdc . Each context combination can
be illustrated by a latent matrix which consists of
latent vectors of context values. Then, user context
combination cu can be represented as a matrix Hu =
[hu

1 ,h
u
2 , ...] ∈ Rdc×|cu|, item context combination cv as

Hv = [hv
1,h

v
2, ...] ∈ Rdc×|cv|, and interaction context

combination ci as Hi = [hi
1,h

i
2, ...] ∈ Rdc×|ci|, where

|cu|, |cv| and
∣∣ci∣∣ are the numbers of user contexts,

item contexts and interaction contexts respectively.

3.2 Context Representation

There are various types of context values in practical
recommender systems, such as categorical value, cate-
gorical set value and numerical value. Here, we show
how different types of context values can be trans-
formed into the corresponding latent representations.

Categorical domain: If a user watches a movie in a
theater, theater is the categorical context value. Each
context value cim in the categorical domain should
be represented by a distinct vector hi

m ∈ Rdc . Fig.
2 shows male and famale in the categorical domain
gender are represented by two distinct vector.

Numerical domain: Numerical context values
widely exist, e.g., the age of a user, the length of a
movie and the time when a user watches a movie. To
match with the representations of context values in
other domains, we use a vector hI

m ∈ Rdc to represent
a numerical domain. To alleviate the dominant effect
of large context values and the negligible effect of s-
mall ones, we employ a logistic function in normaliza-
tion. Assume context values of the numerical domain
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falls a normal distribution, we can calculate the mean
µ and variance σ2 of this numerical domain. Then a
context value cim in this domain is represented as a
logistic function hi

m =
(
1 + exp

(
−
(
cim − µ

)
/σ2
))−1 ·

hI
m, where µ and σ2 are the corresponding mean

and variance of this context domain. For example, in
Fig. 2, the numerical domain length is represented
as hI

m, then 18 and 97 are normalized by a logis-
tic function as

(
1 + exp

(
−(18− µ)/σ2

))−1 · hI
m and(

1 + exp
(
−(97− µ)/σ2

))−1 · hI
m.

Categorical set domain: When a user watches a
movie with parents and children, this companion cim
= {parents, children} is a context value in the categor-
ical set domain CIm = {friends, parents, children}. For
this context value, we construct an indicator vector,
where we normalize this vector for non-empty context
values such that all values in the vector sum up to 1.
Then we estimate a latent vector hi

m,∗ for each cate-
gorical element cim,∗ in the domain CIm. For example,
in Fig. 2, watching a movie with parents and children,
the indicator vector is zT = (0, 0.5, 0.5) and the
categorical set domain {friends, parents, children} is
represented by (hI

m,1; hI
m,2; hI

m,3). Then, the context
value {parents, children} can be computed as hi

m =
zT · (hI

m,1; hI
m,2; hI

m,3).

male

female

gender

18

97

length

0 0.5 0.5

companion: {friends, parents, children}

{parents, children} ×

×

Fig. 2. Latent representations of context values in
different domains. The context value in a categorical
domain can be converted into a latent vector. Context
values in one numerical domain have a shared latent
vector and each value can be represented by a scalar
multiplication. Each element in a categorical set is rep-
resented by a latent vector, and each context value can
be represented by averaging latent vectors of elements
in this context value.

In practical applications, various types of contexts
fall into one of these domains mentioned above. For
instance, the geographical location can be denoted by
a numerical set {latitude, longitude}, where each ele-
ment has its numerical domain. Some kinds of entity
contexts, for instance, low-level features of image/text
and social relations, can be transformed into feature
vectors using machine learning techniques. Each val-

ue in the obtained feature vector can be treated as the
value in a numerical domain.

3.3 Contextual Operating Matrix
In typical matrix factorization methods, latent vectors
of users and items are constant with varying contexts.
But in real-world applications, user interests and item
properties are changed with varying contexts. Here,
under different contexts, we provide context-specific
latent vectors for users and items. Then, the rating
prediction of matrix factorization based methods can
be rewritten as:

r̂u,v,c = b0 + bu + bv +

|c|∑
m=1

bc,m + uc
T vc , (1)

where |c| = |cu|+ |cv|+
∣∣ci∣∣ is the number of contexts,

b0 is the mean rating in training data, bu and bv denote
the biases of user u and item v, bc,m is the bias of a
context value. uc and vc are latent vectors of user u
and item v under the contextual information c.

In a phrase of noun and adjective, the noun has
semantic information and the adjective has semantic
operation on the noun. In recommender systems,
entities have rich semantic information and contexts
act like adjectives which have the semantic operation
on entities. For example, companion with children
can change interests of a user, and he/she may tend
to watch cartoons with children. During Valentine’s
Day, the latent characteristics of a romantic film may
be changed and this film may become popular. We
use contextual operating matrices to reveal how the
contextual information c affects the properties of us-
er/item. The context-specific latent vectors of users
and items can be generated from their original ones.

uc = MU
c u , (2)

vc = MV
c v , (3)

where u and v are the original representations of
the user and item, MU

c and MV
c are d × d contextual

operating matrices of the contextual information c on
users and items. These context-specific vectors can
also be generated from other nonlinear function, e.g.,
the sigmoid function in Eq. 4 and 5, to assess the
effectiveness of the COT framework. In the experi-
mental section, we will show the results of these two
computations.

uc =
(

1 + exp
(
−MU

c u
))−1

− 0.5 , (4)

vc =
(

1 + exp
(
−MV

c v
))−1

− 0.5 , (5)

Comparing with the interaction context combina-
tion which can operate the latent properties of users
and items simultaneously, the user or item context
combination does not have very similar operation on
both users and items. For instance, a user context
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occupation can indicate the potential characteristics of
users which may not have been revealed by the ob-
served user-item interactions, but has slight influence
in changing item properties. In this work, confronting
with three kinds of contextual information, we plan
to separate theirs effects.

Treating three context combinations separately, we
can rewrite the contextual operating matrix as an
operation combination. Serial multiplication may en-
large the defect of one context combination. Here, we
resort to the linear operation combination, contextual
operating matrices of users and items are denoted as

MU
c = MU

cu + MU
cv + MU

ci , (6)

MV
c = MV

cu + MV
cv + MV

ci , (7)

where MU
cu , MU

cv and MU
ci are user-wise operation

matrices of user context combination cu, item context
combination cv and interaction context combination
ci, and MV

cu , MV
cv and MV

ci are item-wise operation
matrices of these context combinations. This linear
operation combination not only can separate the ef-
fect of three context combinations but also can learn
different weights of them implicitly. This combination
can be replaced by other nonlinear combination. For
example, using a sigmoid function, these two opera-
tion matrices can be denoted as follows.

MU
c =

(
1 + exp

(
−MU

cu −MU
cv −MU

ci

))−1

− 0.5 , (8)

MV
c =

(
1 + exp

(
−MV

cu −MV
cv −MV

ci

))−1

− 0.5, (9)

3.4 Contextual Operating Tensor (COT)
We need two weighting matrices to map the latent
matrix of a specific context combination into the op-
eration matrices. For example, we need to estimate
two matrices for each Hi and obtain operation ma-
trices MU

ci and MV
ci . The number of parameters will

increase rapidly as the number of context combina-
tions grows. Besides, since different contexts share
similar semantic effects, for example, both weekend
and being at home may make you would like to
read novels. It will be wonderful and plausible if
we can generate contextual operating matrices from
several basic matrices (named operation tensor) which
represent some common semantic effects of contexts.
In this way, we can not only reduce the number
of parameters to be estimated, but also model the
underlying characteristics of contexts.

To employ the contextual operating tensor, we first
should convert the latent matrix of context combina-
tion into a vector, and then the operating matrix can
be generated from the multiplication of this vector
with the operating tensor. Here, we show how to
transform latent matrices of three context combina-
tions into latent vectors as follows:

aU
cu = HuwU

CU
, aUcv = HvwU

CV
, aU

ci = HiwU
CI
,

aVcu = HuwV
CU
, aVcv = HvwV

CV
, aVci = HiwV

CI
,

where each column of Hi denotes the latent vector of a
context value, and wU

CI
indicates the user-wise context

weights on Hi. The context combination vector a is
a dc dimensional latent vector, which is a weighted
combination of context vectors.

We demonstrate the process of mapping the latent
matrix of a context combination to vectors in Fig. 3.
For each latent matrix Hi, we estimate two weighting
vectors wU

CI
and wV

CI
which indicate user-wise and

item-wise weights on this context combination. Mul-
tiplying the latent matrix with the weighting vectors,
we can obtain the user-specific and item-specific latent
vectors aUCI

and aVCI
respectively. For example, we pre-

dict the rating value of Tom towards Titanic under
the contextual information of theater, time, weather,
companion. The matrix Hi of these contexts is shown
in the middle part of Fig. 3, and each context value
is denoted as a column. Context weights in the left
indicate the influences of four contexts on Tom and
Titanic. The right part is context combination vectors
for Tom and Titanic.

×

×

user-specific latent vector of the 
context combination

latent matrix of a context 
combination

user-wise context weights on 
the context combination

item-specific latent vector of the 
context combination

item-wise context weights on 
the context combination

Fig. 3. The process of generating latent vectors of
a context combination. The middle part is the latent
matrix Hi of the context combination ci. The left part
is user-wise and item-wise context weights which in-
dicate different influences of context values on users
and items. The right part denotes the user-specific and
item-specific latent vectors of this context combination.

After obtaining latent vectors of context combina-
tions, operation matrices can be generated by mul-
tiplying the latent vectors of context combinations
with the operating tensors. We use TU,[1:d] and TV,[1:d]

to denote the operating tensors for users and items,
and briefly write as TU and TV for simplicity. Here,
incorporating contextual operating tensors for users
and items, the operation matrices for users and items
are

MU
c =

(
aUcu + aUcv + aUci

)T
TU

MV
c =

(
aVcu + aV

cv + aVci
)T

TV

Since entity contexts have significantly different
properties from interaction contexts, we would like
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×

×

operation tensor of user 

context combination

latent vector of user 

context combinationoperation tensor of item 

context combination

operation tensor of interaction 

context combination

latent vector of item 

context combination

latent vector of interaction 

context combination

×

operation matrix of user 

context combination

operation matrix of item 

context combination

operation matrix of interaction 

context combination

contextual information c

latent vector of a user

context-specific latent 

vector of the user

×+

Fig. 4. Overview of constructing the context-specific latent vector for a user. Contextual operating tensors are
shown on the left side, and the process of generating the operating matrix is illustrated in the square.

to employ different operating tensors for three context
combinations. We can rewrite the contextual operation
matrices as follows.

MU
c =

(
aUcu
)T

TU
CU

+
(
aUcv
)T

TU
CV

+
(
aU
ci

)T
TU
CI

, (10)

MV
c =

(
aVcu
)T

TV
CU

+
(
aV
cv

)T
TV
CV

+
(
aVci
)T

TV
CI

, (11)

where TU
CU

, TU
CV

and TU
CI

are dc × d × d tensors,
denoting the operating tensors of three context com-
binations for users, TV

CU
, TV

CV
and TV

CI
are operating

tensors for items. Substituting Equations (6-7) in E-
quations (2-3), we have:

uc =
[(

aU
cu

)T
TU
CU

+
(
aUcv
)T

TU
CV

+
(
aUci
)T

TU
CI

]
u ,

vc =
[(

aV
cu

)T
TV
CU

+
(
aVcv
)T

TV
CV

+
(
aVci
)T

TV
CI

]
v .

The operating tensor is composed of d slices, and
each slice should be multiplied with the vector of con-
text combination. Further, we write detailed equations
of context-specific latent vectors of users and items.

uc =

 (
aU
cu

)T TU
CU ,1u +

(
aU
cv

)T TU
CV ,1u +

(
aU
ci

)T TU
CI ,1

u
· · ·(

aU
cu

)T TU
CU ,du +

(
aU
cv

)T TU
CV ,du +

(
aU
ci

)T TU
CI ,d

u


vc =

 (
aV
cu

)T TV
CU ,1v +

(
aV
cv

)T TV
CV ,1v +

(
aV
ci

)T TV
CI ,1

v
· · ·(

aV
cu

)T TV
CU ,dv +

(
aV
cv

)T TV
CV ,dv +

(
aV
ci

)T TV
CI ,d

v


where TU

CI ,m and TV
CI ,m are dc × d matrices, denoting

the mth slice of TU
CI

and TV
CI

. Each slice captures
a specific type of common semantic operation on
users/items.

The process of generating the context-specific latent
vector of a user is illustrated in Fig. 4. After generating
the latent vector of contexts in Fig. 3, we can obtain

the operation of these contexts by multiplying with a
tensor. The operation matrix of these contexts should
change the latent vector of user or item under these
contexts. There are three operating tensors TU

CU
, TU

CV

and TU
CI

. For a specific user-item interaction ru,v,c,
we use aUcu , aU

cv and aUci to represent three context
combinations. Multiplying these vectors of contex-
t combinations with the tensors, the corresponding
operation matrices MU

cu , MU
cv and MU

ci can be ob-
tained, which are certain combinations of semantic
operations in respective contextual operating tensors.
The linear combination of three operation matrices
MU

cu + MU
cv + MU

ci is used to change the original latent
vector of user u, and then the context-specific latent
vector uc under the contextual information c can be
yielded.

After discussing the generating process of context-
specific vectors of users and items, the overall predic-
tion function of COT can be written as:

r̂u,v,c = b0 + bu + bv +
|c|∑

m=1
bc,m+{[(

aUcu
)T TU

CU
+
(
aU
cv

)T TU
CV

+
(
aUci
)T TU

CI

]
u
}T

{[(
aVcu
)T TV

CU
+
(
aVcv
)T TV

CV
+
(
aV
ci

)T TV
CI

]
v
}

Here, we give an example to describe the frame-
work of COT illustrated in Fig. 4. Given Tom, Titanic
and contexts theater, time, weather, companion, we
showed how to generate vectors of four interaction
contexts for Tom and Titanic in Fig. 3. In Fig. 4, we
can compute the operation matrix of these vectors by
multiplying with operation tensor in the left. Then,
the latent vector of Tom under these contexts can
be calculated by using operation matrix and their
original latent vectors.
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3.5 Parameter Inference
We have already introduced our model mathemat-
ically in the previous section. Now, to accomplish
the parameter inference, we need to minimize the
following objective function:

min
u,v,H,T,w

J =
∑

〈u,v,c〉∈Ω

(ru,v,c − r̂u,v,c)2

+
λ

2
(bu

2 + bv
2 +

|c|∑
m=1

bc,m
2+

||u||2 + ||v||2 + ||H||2 + ||T||2 + ||w||2),

(12)

where Ω denotes the training set, and λ is a parameter
to control the regularizations, which can be deter-
mined using cross validation. The derivations of J
with respect to all parameters can be calculated as:

∂J

∂b∗
= −2lu,v,c + λb∗ ,

∂J

∂u
= −2lu,v,c

(
MU

c

)T (
MV

c v
)

+ λu ,

∂J

∂v
= −2lu,v,c

(
MU

c u
)

MV
c + λv ,

∂J

∂H∗
=− 2lu,v,c

(
TU
C∗

u
)(

MV
c v
) (

wU
C∗

)T
+ lu,v,c

(
TV
C∗

v
)(

MU
c u
) (

wV
C∗

)T
+ λH∗ ,

∂J

∂wU
CU

= −2lu,v,cHT
u

(
TU
CU

u
)(

MV
c v
)

+ λwU
CU

,

∂J

∂wU
CV

= −2lu,v,cHT
v

(
TU
CV

u
)(

MV
c v
)

+ λwU
CV

,

∂J

∂wU
CI

= −2lu,v,cHT
i

(
TU
CI

u
)(

MV
c v
)

+ λwU
CI

,

∂J

∂wV
CU

= −2lu,v,c

(
MU

c u
)

HT
u

(
TV
CU

u
)

+ λwV
CU

,

∂J

∂wV
CV

= −2lu,v,c

(
MU

c u
)

HT
v

(
TV
CV

u
)

+ λwV
CV

,

∂J

∂wV
CI

= −2lu,v,c

(
MU

c u
)

HT
i

(
TV
CI

u
)

+ λwV
CI

,

∂J

∂TU
∗,m

= −2li,j,kHuwU
∗ uT vc,m + λTU

∗,m ,

∂J

∂TV
∗,m

= −2li,j,kHvwV
∗ vTuc,m + λTV

∗,m ,

where b∗ is a specific bias, H∗ describes the latent
matrix of a specific context combination, TU

∗ is an
operating tensor of a specific context combination for

the user, and TU
∗,m is the mth slide of the operating

tensor TU
∗ . uc,m and vc,m denotes the mth component

of latent vector uc and vc respectively, and lu,v,c =
ru,v,c − r̂u,v,c.

3.6 Optimization
After calculating all the derivations, a minimum so-
lution of J in Equation 12 can be obtained by using
stochastic gradient decent, which has been widely
used in recommender systems [15][16]. Here, in Al-
gorithm 1, we describe the optimization algorithm of
our proposed COT model.

We propose an efficient learning algorithm (Algo-
rithm 1) to optimize the objective function with the
contextual operation. At first, all the parameters are
initialized randomly in the range [-0.5, 0.5]. Then, we
randomly choose a rating ru,v,c from the training set,
and update all parameters using the derivations in the
section of parameter inference. After the algorithm is
convergent, the model parameters b, u, v, H, T and
w are obtained, and the rating prediction r̂u,v,c can
be calculated using Equation 3.4. Note that γ is the
learning rate, which can be determined through the
cross validation. This optimization algorithm can be
implemented without requiring significant change to
conventional matrix factorization models.

Algorithm 1 Optimization Algorithm of COT
1: Input: The training set, each ru,v,c is associated

with a user u, an item v and contextual informa-
tion c.

2: Output: Model parameters b, u, v, H, T and w.
3: Initialize b, u, v, H, T and w randomly.
4: while not convergent do
5: Select an instance ru,v,c from the training set.
6: Calculate ∂J

∂b , ∂J
∂u , ∂J

∂v , ∂J
∂H , ∂J

∂T , ∂J
∂w .

7: Update b← b− γ ∂J
∂b .

8: Update u← u− γ ∂J
∂u .

9: Update v← v− γ ∂J
∂v .

10: Update H← H− γ ∂J
∂H .

11: Update T← T− γ ∂J
∂T .

12: Update w← w− γ ∂J
∂w .

13: end while

Based on the optimization algorithm, now we ana-
lyze the time complexity of training process. In each
iteration, the time complexity of updating u and v
are O(d2 × |Ω|), where |Ω| is the size of training
dataset. The time complexity of updating H and w are
O(dc × d2 × |Ω|), and the complexity of updating T is
O(dc×d×|Ω|). Therefore, the total time complexity of
training process is O(dc × d2 × |Ω|). Since |Ω| is much
larger than dc×d2, the time complexity can be viewed
as growing linearly with respect to the size of training
dataset. Therefore, the time complexity of COT is very
similar to that of the state-of-the-art CARS2 and FM
models, which both can be treated as linear with size
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of training set. This time complexity also shows that
COT has potential to scale up to large-scale data sets.

4 EXPERIMENT
In this section, we investigate the performance of
the COT model. First, we describe the datasets, the
comparison methods and experimental settings. Then
we report and analyze experimental results, the con-
vergence performance, the scalability analysis and
impact of parameters. Last but not the least, we find
some interesting observations on context representa-
tions and context weights.

4.1 Evaluation Datasets
Although the context-aware recommendation is a
practical problem, there are only a few publicly avail-
able datasets. We investigate the performance of our
proposed model on three benchmark datasets: the
Food dataset [33], the Adom dataset [22] and the
MovieLens-1M dataset1.
• Food Dataset [33] is collected from a restaurant.

There are two interaction contexts: virtuality de-
scribes if the situation in which the user rates is
virtual or real, and hunger captures how hungry
the user is.

• Adom Dataset [22] is collected from a movie
website and has rich contextual information.
There are five interaction contexts: companion
captures whom the user watches the movie with,
when shows whether the user watches the movie
at weekend, release indicates whether the us-
er watches the movie on the release weekend,
rec captures how the user will recommend the
movie, and where indicates whether the user
watches the movie in a theater.

• Movielens-1M Dataset is collected from a per-
sonalized movie recommender system2. There is
no explicit contextual information, but the times-
tamp can be split into two interaction contexts:
hour and day. Besides, this dataset contains user
and item contexts, i.e., gender, age and occupation
of the user and title and genre of the item.

With rich interaction contextual information, the
Food and Adom datasets are widely used for the
context-aware recommendation. The main difference
between these two datasets lies on the amount of con-
textual information, which gives us an opportunity
to estimate the relation between the model perfor-
mance and the scale of contexts. The MovieLens-1M
dataset is another widely used dataset [27], where
the timestamp can be used as interaction contexts
and attributes of users and items can be treated as
entity contexts. We employ this dataset to examine
the performance of methods in dealing with general
contextual information.

1. http://grouplens.org/datasets/
2. http://movielens.org/

4.2 Compared Methods
In this work, we compare the COT model with five
state-of-the-art models:
• SVD++ [17] is an advanced matrix factorization

model for recommendation systems, but is not
designed for the context-aware recommendation.
We implement it as the baseline in our experi-
ments.

• Multiverse Recommendation [5] is a state-of-the-
art model which employs Tucker decomposition
on the user-item-context rating tensor. This model
outperforms conventional context-aware recom-
mendation models, such as the pre-filtering and
multidimensional approach [22].

• FM [2] is applicable for different kinds of contex-
tual information by specifying the input data. We
use LibFM3 to implement this general method.

• HeteroMF [8] uses transfer matrices to model the
interaction contexts. Each specific context combi-
nation has a transfer matrix.

• CARS2 [6] provides each user and item with a
latent vector and a context-aware representation.
The context-aware representation captures latent
properties of the user and item manipulated by
the contextual information.

Moreover, among these methods, FM and COT can
handle general contextual information, and other
methods only address the interaction contexts.

4.3 Evaluation Metrics
To measure the performance of rating prediction, we
use the most popular metrics, Root Mean Square Error
(RMSE) and Mean Average Precision (MAE):

RMSE =

√√√√ ∑
ru,v,c∈Ωtest

(ru,v,c − r̂u,v,c)2

ntest
, (13)

MAE =

∑
ru,v,c∈Ωtest

|ru,v,c − r̂u,v,c|

ntest
, (14)

where Ωtest denotes the test set and ntest denotes the
number of ratings in the test set. For these two met-
rics, the smaller the value, the better the performance.

4.4 Experimental Methodology
In the experiment, to assess the performance of com-
parison methods on all users and cold start users, we
adopt two different ways in splitting the datasets.

All Users: We randomly sample about 10% ratings
from the dataset to create the test set, and the remain-
ing 90% ratings are used as the training set.

Cold Start: We randomly sample some users from
the original dataset, then select less than three of

3. http://www.libfm.org/
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TABLE 1
Performance comparison with RMSE and MAE on three datasets and two kinds of splitting (d = 8, dc = 4).

Food Adom Movielens-1M

All Users Cold Start All Users Cold Start All Users Cold Start
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVD++ 1.155 0.948 1.278 1.086 2.782 2.093 3.421 2.436 0.908 0.693 1.203 0.921
Multiverse 1.063 0.841 1.121 0.921 1.833 1.383 2.168 1.556 0.883 0.669 1.025 0.771

FM 1.055 0.845 1.115 0.918 1.842 1.426 2.125 1.563 0.863 0.661 0.983 0.752
HeteroMF 1.072 0.862 1.136 0.932 2.084 1.552 2.384 1.782 0.887 0.677 1.054 0.806

CARS2 1.020 0.807 1.112 0.911 1.788 1.372 2.104 1.538 0.869 0.664 0.992 0.758
COT 0.996 0.791 1.093 0.896 1.718 1.364 2.054 1.515 0.855 0.654 0.971 0.743

All Users Cold Start
5

10

15

20

R
M

S
E

 Im
pr

ov
em

en
t(

%
)

 

 

Multiverse
FM
HeteroMF

CARS2

COT

(a) Food

All Users Cold Start
20

25

30

35

40

45

50

R
M

S
E

 Im
pr

ov
em

en
t(

%
)

 

 

Multiverse
FM
HeteroMF

CARS2

COT

(b) Adom

All Users Cold Start
0

5

10

15

20

R
M

S
E

 Im
pr

ov
em

en
t(

%
)

 

 

Multiverse
FM
HeteroMF

CARS2

COT

(c) Movielens-1M

Fig. 5. RMSE improvements (%) of corresponding context-aware methods over the context-unaware method
SVD++ on three datasets.

their ratings as the training set, and use all remaining
ratings as the test set. The numbers of ratings of each
user in the test set are randomly decided. Also, the
test set covers about 10% of the original dataset, and
the training set covers about 90%.

Moreover, in all experiments, the training set is
further split into five parts, and the model parame-
ters can be better determined by using 5-fold cross
validation.

4.5 Performance Comparison
Table 1 illustrates experimental results measured by
RMSE and MAE on three datasets and two kinds
of splitting. We identify that through all the experi-
ments, context-aware models outperform the context-
unaware model SVD++. It demonstrates the impor-
tance of utilizing the contextual information in rec-
ommender systems. This table also shows that COT
achieves the best results consistently. It is because that
using context representation and contextual operating
tensor to model contextual information is very effec-
tive. Comparing with the results of CARS2, the better
performance of COT is due to the powerful represen-
tative ability of distributed representations of context
values. Moreover, on Movielens-1M with entity con-
texts, FM gets slightly better results than CARS2. This
evidence shows that user/item contexts can provide
additional information which cannot be revealed by
interactions and interaction contexts. Since CARS2

only can deal with interaction contexts, FM utilizing
interaction contexts and entity contexts simultaneous-
ly can outperform CARS2 on this dataset.

In terms of all users splitting, comparing with the
best performance of other models, COT improves
the RMSE values by 2.4%, 3.9% and 1.0% on the
Food, Adom and Movelens-1M datasets respectively.
In terms of cold start splitting, the improvements
become 1.7%, 2.4% and 1.2% accordingly. The im-
provement of MAE has very similar trend as that of
RMSE. Among three datasets, COT has the greatest
improvement on Adom, which shows COT to be
particularly helpful for the dataset with rich contextu-
al information. FM and Multiverse Recommendation
achieve very similar performance on Food and Adom,
but on Movielens FM has great improvement over the
Multiverse recommendation. This improvement indi-
cates that user/item contexts are important in the con-
textual modeling. HeteroMF performs close to Multi-
verse Recommendation on Food and Movielens-1M,
but fails on Adom. This may be because Adom has
richer contextual information than the other datasets,
and HeteroMF needs to estimate too many transfer
matrices for great amount of contextual information.

We illustrate the RMSE improvements of corre-
sponding context-aware models over the context-
unaware method SVD++ in Fig. 5. On all three
datasets, the RMSE improvements on cold start s-
plitting are larger than those on all users splitting.
It shows that the contextual information is more im-
portant in the cold start situation and can be used to
compensate for the lack of history information. Since
Adom has the greatest amount of contextual informa-
tion among three datasets, RMSE improvements on
Adom (more than 30% in average) are greater than
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Fig. 6. Convergence curves of comparison models on three datasets. The x-axis is the number of iterations, and
y-axis shows the values of RMSE(log).

those on the others (about 10% in average). These
abundant contexts are helpful for model construction
and significantly enhance the recommendation per-
formance. Moreover, on Movielens, the improvement
on cold start splitting is about three times more
than the improvement on all users splitting. As the
rating number of Movielens is larger than those of
other datasets, the advanced context-unaware method
SVD++ can be trained more sufficiently and obtain
better results. When the rating number decreases
significantly, contextual modeling becomes important
on the cold start users. This observation reveals the
context modeling is really helpful for the cold start
users in real applications.

Here, we compare and analyze the performance
difference between COT and two variants introduced
in Section 3.3. The variant with a nonlinear transfor-
mation of context-specific latent vector is named as
COT V1, and the variant employing a nonlinear com-
bination of different contexts is denoted as COT V2.
The experimental performance on all users splitting
of three datasets is list in Table 2. The results of
COT and two variants are very similar. It may be
because that the contextual operation can well reveal
the underlying properties of contextual information.
Then, under this framework, different strategies of
transformation or combination just have a slight effect
on the final performance.

TABLE 2
Performance comparsion of COT and two variants.

Food Adom Movielens-1M
RMSE MAE RMSE MAE RMSE MAE

COT 0.996 0.791 1.718 1.364 0.855 0.654
COT V1 0.999 0.793 1.726 1.365 0.857 0.655
COT V2 0.997 0.792 1.723 1.365 0.856 0.655

4.6 Convergence Analysis
The convergence curves of comparison methods on
three datasets are illustrated in Fig. 6. It shows that
RMSE of COT becomes stable after about 30 iterations.

These evidences indicate that COT has a satisfying
convergence rate and can be trained rapidly and
efficiently in practical applications. HeteroMF also
shows its ability in convergence and the performance
becomes stable after convergence. SVD++ converges
slowly, and convergence curves become stable on
Adom and Movielens-1M until the number of iter-
ations reaches about 100. The performance of FM
using SGD is very effective, but we also observe that
FM needs numerous iterations to obtain convergen-
t situations on Food and Movielens-1M. On Food,
CARS2 and Multiverse need more iterations to obtain
a stable result. It may be because that CARS2 and
Multiverse recommendation have many parameters to
be estimated and are more likely to overfit this kind
of sparse dataset.
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Fig. 7. Matrix diversities of operating tensors with the
increasing number of iterations on three datasets.

As we discussed above, each slice of the contextual
operating tensor represents one kind of common op-
eration. With the larger difference among these slices,
the contextual operating tensor is more powerful in
modeling the contextual operation. Similar to the con-
tent diversity measuring the difference among con-
tents of movies [34], we use a metric matrix diversity
to measure the difference among all slices. Matrix
diversity is calculated as average RMSE of all slice
pairs in each tensor. Fig. 7 illustrates how matrix di-
versities of contextual operating tensors change with
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the increasing number of iterations. It indicates that
matrix diversities are increasing when the number of
iterations grows from 1 to about 30. After 30 iterations,
matrix diversities become stable. We find that COT
achieves convergence in Fig. 6 at the same time as the
matrix diversity converged in Fig. 7. These evidences
indicate that when the matrix diversity achieves stable
results, COT can obtain the best performance. More-
over, the stable value of matrix diversity on Adom is
the largest one. This may be because rich contextual
information on Adom has the powerful operating
ability in changing the properties of users and items.
This clue also confirms the evidence in Fig. 5, context-
aware methods have the greatest RMSE improvement
over the context-unaware SVD++ on Adom.

4.7 Scalability Analysis

Besides the analysis of convergence rate, we also
investigate the scalability of the COT method with
varying portion of training data. Here, we implemen-
t COT on three datasets and for each dataset we
measure the corresponding time cost of one iteration
in the training process Fig. 8 shows that on three
datasets, time consumptions of our method is linear
with respect to the size of training data. This result
empirically confirms the analysis of time complexity
in Section 3.6. Comparing with the state-of-the-arts,
i.e., the CARS2 and FM methods, time consumptions
of these three methods have very similar trend, they
all can be viewed as linearly increasing with the size
of training set. These empirical results and analysis of
time complexity show that our proposed method is
very efficient and can provide a reasonable scalability
for real applications.
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Fig. 8. Time consumption of COT with varying portion
of training data on three datasets.

4.8 Distribution of Context Representation

In this section, we demonstrate distributed represen-
tations of context values, and observe the potential
relation among these context values.
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Fig. 9. Demonstration of distributed representations of
context values in a two dimensional space using PCA.

We use Principal Component Analysis (PCA) to
project representations of context values on Adom
into two dimensional vectors, and these context val-
ues are illustrated in Fig. 9. The distance reveals the
potential relation among these context values. On
weekends, we may watch a movie in companion with
lover and parents, and on weekdays we are more
likely to watch alone. This observation follows our
intuition. If a person is alone, he is more likely to
watch a movie at home. If a person is with lover or
parents, he tends to watch a movie in a theater. When
a movie is on its released weekend, we can watch it in
a theater, and if a movie has been released for a long
time, we may watch it at home. Besides, we see that
the colleagues is close to friends, lover and parents
are close to siblings. colleagues and friends seem
far away from other context values, which reveals
that a person rarely watches a movie with colleagues
or friends. Moreover, we find that excellent is an
outlier, and the majority of movies are good, just so
so or terrible. excellent is in the same direction of
good. These observations are interesting and follow
our intuition, and the context representation of COT
provides us an opportunity to examine the potential
relation of these context values.

4.9 Context Weights
On Food, Adom and Movielens, the user-wise and
item-wise context weights wU and wV are demon-
strated in Fig. 9. Fig. 9 (a) is the user-wise context
weights and Fig. 9 (b) is the item-wise context weight-
s. The major difference between these two figures is
the context weights on the Food dataset. When a user
rates one kind of food, for the user, how hungry is
more relevant to the rating results than whether the
situation is virtual or real. For the item, virtual or
real is more significant than the hunger degree of
the user. These are because the degree of hungry is
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.

describing situations of users and has more important
effect on users, while virtuality describes different
situations of rating events, and real or virtual is
important in revealing the properties of items. On the
Adom dataset, the context rec has the highest weight
and becomes the dominant context. This may be
because the rec context, indicating how the user will
recommend the movie, has high relevance with the
final rating. On Adom, we also observe that a slight
difference between user-wise and item-wise weights
is the companion context. It may be because with dif-
ferent companion a person can choose different kinds
of movies to watch, but some movies are pictured for
specific kinds of audiences. For example, the cartoon
movie is for parents with children and the romance
movie is for a person with his/her lover. The figure
also demonstrates that on Movielens-1M day is more

important than hour. It shows that the context day has
more discrimination ability than the context hour on
the user behavior of watching movie.

4.10 Impact of Parameters
Here, we first assess the COT model with respect to
varying dimensionalities of entity vector d and context
vector dc on the Food dataset. Fig. 10 (a) shows that
with increasing d and dc, the RMSE value decreases
at first, then stays nearly stable after d = 5 and dc = 3.
These observations indicate that the parameter d and
dc can be selected in a large range on Food, and the
performance of COT does not rely on the parameter
selection very much.

In Fig. 10 (b) and (c) we further illustrate the
RMSE values on Adom w.r.t. d and dc respectively.
We set dc = 4 and calculate the RMSE values with
the varying dimensionality of d, and the results are
demonstrated in Fig. 10 (b). Then we fix d = 8 and
evaluate the performance of COT with dc in Fig. 11
(c). Fig. 11 (b) indicates that the performance of COT
is improving with the increase of dimensionality d
generally. When the dimensionality d is larger than
5, the COT method can obtain decent results. This
observation of the entity vector dimensionality on
Adom is very similar to the performance on Food in
Fig. 10 (a). On the other hand, the performance of
COT is changed greatly with the dimensionality of
context vector dc. The best performance is obtained
when the dimensionality dc is in the range [3, 6]. When
we increase the dimensionality dc, the performance
of COT is decreasing. Since the Adom dataset has
abundant contextual information but a small number
of training ratings, the context representation with
high dimensionality is prone to overfitting.

From the experimental results in Fig. 10, we observe
that the dimensionality of context vector dc should
be selected in a range with small values, and the
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performance of COT will be very stable. Since the
performances of COT with parameter values selected
from these ranges are very similar, we only illustrate
the results with d = 8 and dc = 4 on three datasets
for simplicity.

5 CONCLUSION

In this work, a novel context-aware recommendation
method, i.e., COT, has been proposed. We provide
each context value with a continuous vector, which
is a distributed representation different from the one-
hot representation in FM and other methods. Such
distributed representations have a powerful ability in
describing the semantic operation of context values.
Similar to the semantic composition in NLP where the
adjective has an operation on the noun, we provide
the contextual information of each rating event with
a semantic operation matrix, which can be used to
generate new vectors of users and items under this
contextual situation. At the same time, the common
semantic effects of contexts can be captured by contex-
tual operating tensors. Then the contextual operating
matrix can be calculated from the contextual operating
tensor and context representations. The experimental
results on three real datasets show that COT out-
performs state-of-the-art context-aware models. From
experimental results, we observe that the potential
relation among the context values is interesting and
follows our intuition. And context weights of COT can
be used to explain the importance of context values
in changing vectors of users and items.

In the future, we would like to introduce a pairwise
ranking constraint on the contextual information. A
user-item interaction can be generated under specific
contextual information but cannot be yielded under
other contextual situations. This kind of pairwise
ranking constraint reveals the relative information
among different contextual situations and can be used
to further enhance context modeling. Moreover, s-
ince the top-n recommendation is another significant
measurement of recommender systems, analyzing the
ranking performance of the COT framework will be
a very interesting issue in future.
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