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A Unified Framework Based on Graph Consensus
Term for Multiview Learning
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Abstract—1In recent years, multiview learning technologies
have attracted a surge of interest in the machine learning domain.
However, when facing complex and diverse applications, most
multiview learning methods mainly focus on specific fields rather
than provide a scalable and robust proposal for different tasks.
Moreover, most conventional methods used in these tasks are
based on single view, which cannot be readily extended into
the multiview scenario. Therefore, how to provide an efficient
and scalable multiview framework is very necessary yet full
of challenges. Inspired by the fact that most of the existing
single view algorithms are graph-based ones to learn the complex
structures within given data, this article aims at leveraging
most existing graph embedding works into one formula via
introducing the graph consensus term and proposes a unified and
scalable multiview learning framework, termed graph consensus
multiview framework (GCMF). GCMF attempts to make full
advantage of graph-based works and rich information in the
multiview data at the same time. On one hand, the proposed
method explores the graph structure in each view independently
to preserve the diversity property of graph embedding methods;
on the other hand, learned graphs can be flexibly chosen to con-
struct the graph consensus term, which can more stably explore
the correlations among multiple views. To this end, GCMF can
simultaneously take the diversity and complementary information
among different views into consideration. To further facilitate
related research, we provide an implementation of the multiview
extension for locality linear embedding (LLE), named GCMF-
LLE, which can be efficiently solved by applying the alternating
optimization strategy. Empirical validations conducted on six
benchmark datasets can show the effectiveness of our proposed
method.

Index Terms— Graph consensus term, iterative alternating
strategy, multiview learning, unified framework.
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I. INTRODUCTION

ITH the rapid development of the information era,

more and more data can be obtained from different
domains or described from various perspectives, which have
gained extensive attention from researchers in recent years.
For examples, an image could be represented by different
visual descriptors [1] to reveal its color, texture, and shape
information; the document could be translated as different
versions via various languages [2]. These data collected from
multiple views depict different perspectives for one object,
indicating that one view may contain some knowledge infor-
mation that other views do not involve. A feasible manner to
deal with multiview data is proposed to concatenate different
views together as one view. But this way not only lacks
physical meaning owing to its specific statistical property
in each view, but also ignores the complementary nature of
different views. Therefore, how to effectively discover the rich
information of multiple views and the underlying structures
within multiview data is the main challenge. To take full
advantage of rich information in multiview data, various mul-
tiview learning methods [3], [4] have been well investigated in
many applications (e.g., classifications [5], [6], clustering [7],
[8], dimension reduction [9], [10] reidentification [11], [12],
etc). Among these works, one popular class of multiview
learning methods [13], [14], [15], [16] is to consider the
weighted combination of different views to explore a common
latent space shared by all views in integrating multiview infor-
mation. For example, auto-weighted multiview graph learning
(AMGL) [14] is an auto-weighted multiple graph learning
method, which can automatically allocate ideal weight for
each view to find common low-dimensional representations.
Unlike these works above, to further guarantee the comple-
mentary effects across different views, these algorithms in co-
training [17], [18] and co-regularization [19], [20] styles are
developed to explore the complementary information among
different views. The former iteratively maximizes the mutual
agreement on different views to guarantee the consistency of
different views. The latter employs co-regularization terms
of discriminant functions, added into the objective function,
to ensure the consensus among distinct views. However, these
methods may produce unsatisfactory results when facing such
multiple views that are highly related but slightly different
from each other. More importantly, these above methods
mainly focus on specific fields so that cannot provide a unified
framework for different tasks. Even though some general
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multiview frameworks [21], [22], [23] have been proposed in
recent years, but these works usually tend to some specific
styles of multiview models, such as multiview subspace learn-
ing. To this end, there are not still sufficient researches on gen-
eralized multiview frameworks. Inspired by graph embedding
framework [24] that most of subspace learning methods [25],
[26] and their kernel extensions [27], [28] could be also cast
as special embedding methods based on the graph, and the fact
that most existing multiview works are graph-based ones, this
article attempts to handle these above issues based on graph
embedding technology.

This article proposes a novel framework, named graph
consensus multiview framework (GCMF), for multiview learn-
ing problems. GCMF aims to provide a scalable and robust
proposal for different multiview tasks, by leveraging most
existing graph embedding works based on single view into
a unified formulation. Specifically, to preserve the diversity
property of intrinsic information in each view, this model
explores the intrinsic graph structure in each view based on
single-view graph method; the graph consensus term based
on learned graphs is proposed to consider the correlations
among multiple views jointly, which can fully exploit the
complementary information among different learned represen-
tations. For solving the proposed GCMEF, this article devel-
ops a rough paradigm based on iterative alternating strat-
egy, and the self-weighting strategy is optionally utilized
in the optimization process. To facilitate related multiview
researches and improve the convenience for readers, the
proposed framework is utilized to implement the multiview
extension of locality linear embedding (LLE) [29], named
GCMF-LLE. Finally, extensive experiments based on the
applications of document classification, face recognition, and
image retrieval validate the ideal performance of our proposed
method. The major contributions in this article can be listed as
follows.

1) We propose a novel unified framework named GCMF
to leverage most of existing single-view works based on
the graph into a unified formula, which can be used in
complex and diverse applications.

2) Graph consensus term is proposed to exploit the com-
plementary information among different learned repre-
sentations, in which the construction manner for learned
graph can be flexibly chosen according to the practical
tasks.

3) An implementation of the multiview extension for LLE
is provided to construct a novel multiview learning
method, named GCMF-LLE, which can facilitate the
usage and understanding for readers.

The remainder of this article is organized as follows.
In Section II, we briefly review multiview learning methods
closely related to our method; in Section III, we describe
the construction procedure of the proposed GCMF and its
optimization algorithm; in Section IV, the proposed framework
is utilized to implement the multiview extension of LLE;
in Section V, extensive experiments on six datasets evaluate
the effectiveness of our proposed approach; in Section VI,
we make the conclusion of article.
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II. RELATED WORK

In this section, we review a brief comprehension of the
related works close to the proposed method, which can be
divided into three following categories.

A. CCA-Based Multiview Methods

Canonical correlation analysis (CCA) [30] and its kernel
extension [31] are representative methods for cross-view fea-
tures alignment. Suppose that two sets of X and Y, consisting
of N observations, are drawn jointly from a probability distrib-
ution. CCA-based multiview methods [21], [32], [33] employs
CCA to project the two views into the common subspace by
maximizing the cross correlation between two views, which
can be expressed as follows:

Corr(X,Y) = tr( Wy XY Wy) (1)

where Wx and Wy denote the projecting matrix of the set X
and the set Y, respectively. tr(-) is the trace of the matrix.

In particular, CCA is further generalized in the multiview
situation, named multiview CCA (MvCCA) [32], which can
handle multiview data with more than two views. Multiview
discriminant analysis [33] is proposed to extend LDA [28]
into a multiview setting, which projects multiview features into
one discriminative common subspace. Generalized multiview
analysis (GMA) [21] solves a joint and relaxed problem of the
form of the quadratic constrained quadratic program (QCQP)
over different feature spaces to obtain a common linear
subspace, which generalizes CCA for multiview scenario, i.e.,
cross-view classification and retrieval. Inspired by the advance
of deep neural networks [34], Andrew et al. [35] proposed
deep CCA to capture the association of high semantic level
among multiview data by associating the representation among
multiple views at the higher level. However, dimensionalities
of different views must keep equal with each other in these
CCA-based works.

B. HSIC-Based Multiview Methods

Hilbert—Schmidt independence criterion (HSIC) [36] mea-
sures dependence of the learned representations of different
views by mapping variables into a reproducing kernel Hilbert
space, which could be expressed as follows:

HSIC(X,Y) = (N — ) t(KxHK y H) )

where Ky and Ky denote the Gram matrix of the set X and
the set Y, respectively. H = I — N~'117 centers the Gram
matrix Ky or Ky to have zero mean in the feature space.
HSIC-based multiview learning methods [37], [38], [39],
[40], [41], [42], [43] explore complementary information by
utilizing HSIC to measure the correlations of different views.
Compared to those methods based on CCA, such HSIC-based
multiview methods can relieve the restriction of equal dimen-
sionalities for different views. Among them, the work [37]
employs a kernel dependence measure of HSIC to quantify
alternativeness between clustering solutions of two views,
which iteratively discovers alternative clusterings. Similarly,
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the work [39] exploits the complementarity information of
multiple views based on HSIC to enhance the correlations
(or penalize the disagreement) across different views during
the dimensionality reduction, and explores the correlations
within each view jointly. Latent multiview subspace clustering
(LMSC) [40] is proposed to seek the underlying latent repre-
sentation shared by all views, which simultaneously combines
the HSIC term to discover the complementary information
from multiple views. Similar to these works, similarity and
diversity induced paired projection (SDPP) [42] introduces
the HSIC term as a co-regularization to explicitly enforce the
diversity, and removes the view-specific information that does
not contribute to task. However, these HSIC-based works usu-
ally incorporate the inner product kernel to construct the HSIC
term, which might lead to unsatisfactory performance when
facing those nonlinear cases. Differing from those methods
above, graph consensus term proposed in this article not only
can overcome the limitation of dimensional equivalent across
views but might be more applicable for the nonlinear cases.

C. Graph-Based Multiview Methods

Generally, most of multiview learning methods belong to the
category of the graph-based method. At the aspect of graph-
based methods, traditional graph-based methods mainly aim
to explore the relationships among data points, and its unified
form can be generally expressed as follows:

min F(G’,U") + AU") 3)

U’eC’
where C° denotes the different constraints on the embedding
U’. F(,-) is the loss function defined on the embedding
U’ and the graph G’, and €2(-) stands for the regularization
term of the embedding U". Graph embedding framework [24]
implies that most of subspace learning methods [25], [26] and
their kernel extensions [27], [28] could be also cast as special
graph-based embedding methods like the form in (3). Other
graph-based ones are using the so-called self-expressiveness
property, and representative works include low-rank represen-
tation (LRR) [44], [45], sparse subspace learning [46], [47],
etc.

On the contrary to traditional graph-based methods, graph-
based multiview methods aim to exploit the intrinsic structure
information within multiview data. Thereinto, the most rep-
resentative group of multiview methods [8], [14], [48], [49],
[501, [51], [52], [53], [54] aim to fuse multiple features or
graphs into one common latent space shared by all views.
Multiple kernel learning (MKL) [49], [52] is also a natural way
to integrate different views based on the direct combination of
different views and learn a common low-dimensional represen-
tation. Different from MKL, parameter-free multiview learning
methods [14] provide a self-weighting strategy to fuse multiple
graph information without additional parameters. Besides,
learning a shared graph among all views is also an efficient
manner to integrate the diversity information within multiview
data, e.g., graph-based multiview clustering (GMC) [8] and
multiview latent proximity learning (MLPL) [54]. However,
these above methods do not explicitly consider the comple-
mentarity efforts across different views. Besides, these existing

TABLE I
IMPORTANT NOTATIONS USED IN THIS ARTICLE

Notation | Description
M The number of views
N The number of samples
X" The features set in the vth view
xy The ith sample in the vth view
K" The kernel matrix in the vth view
Uv The embedding in the vth view
G? The graph matrix defined in original features X"
G? The graph matrix defined in learnt features U"
F(,) The loss function defined on the embedding U"
Q) The smooth regularized term defined on the embedding U"
Tr() The trace of the matrix

graph-based methods for single view are not applicable for
extending to the multiview setting directly, so that we cannot
take full advantage of these works. Unlike these graph-based
methods, this article approximately regards most single-view
methods as graph-based works and leverages most of them
into a unified framework while comprehensively considering
rich information within multiview data.

III. METHODOLOGY

In this section, we discuss the intuition of our proposed
framework, named GCMF. Here, we introduce the graph
consensus term to regularize the dependence among different
views. For clarity, the flowchart of GCMF is shown in Fig. 1.
Subsequently, a rough paradigm based on iterative alternating
strategy is proposed to solve the solution of GCMEF. Finally,
we provide a more comprehensive explanation by comparing
it with other related multiview learning methods. For conve-
nience, the important notations used in the remainder of this
article are summarized in Table 1.

A. Problem Definition

Given a multiview dataset consisting of M views, the
data in the oth view (1 < v < M) can be denoted as
X" = {x{,x5,...,x%}, in which N is the number of samples.
The proposed method aims to obtain the graph structure or
the embedding in each view under the multiview setting.
We separately employ G° € RV*N and U” € R¥*V to denote
the graph structure or the embedding in the oth view, where
d’ is the dimensionality of the oth view. Differing from the
graph G" defined on X”, G is the graph constructed by the
learned embedding U®. For the multiview setting, a naive way
is to incorporate all views in (3) directly as follows:

M
H v v 1
[Unecrmr;fm;f((; ,UY) + 22(UY). 4)
Intuitively, this naive way implements graph embedding prob-
lem for each view independently and fails to exploit the
diversity information of these multiple views. More impor-
tantly, this way neglects the correlations of these multiple
views, so that the complementary information among multiple
views cannot be made full advantage to enforce all views
to learn from each other. Accordingly, how to efficiently
discover the complementary information among views is the
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Mutual learning Results

Fig. 1. Flowchart of the proposed GCMF. Given a collection of samples with M views, e.g., {X!, X2, ..., X™}. GCMF first explores the graph structure G”
in each view by graph embedding model independently. Based on the graph G”, we can initialize the embedding U" in the vth view. Later, mutual learning
based on graph consensus term Reg(U”, GY) is to enforce different views to learn with each other, where the graph G is built on the learned embedding
U". With the specific-view representations {U 1 U2, ..., UM} learned, the kNN classifier can be utilized to obtain the final classification results.

key point. Besides those works based on CCA or HSIC,
traditional solutions usually minimize the difference between
the embeddings of pairwise views directly. However, such
methods are only suitable for the case that the dimensionalities
are equal for different views. For these reasons, it is necessary
and worthy to develop a novel co-regularization term with
better scalability and robustness to enforce different views to
mutually learn.

B. Graph Consensus Term

In this article, we investigate to measure the dependence
among all views based on graph structures, which reveals the
relationships among all samples in each view. Specifically,
we attempt to construct the view-structure consensus in terms
of learned graphs to regularize the dependence between two
views. Taking the example with two graphs G, and G} in
the oth view and the wth view, if G, and G, are obtained
by the same style of graph approaches, discovering similarly
property of individual view, we call such two graphs as homo-
geneous graphs; in contrast, if two graphs are solved by the
different style of graph approaches, we call such two graphs as
heterogeneous graphs. When facing the case of homogeneous
graphs, directly minimizing the gap |G — GY||3 between
two graphs is to make the relationships among all samples,
as consistent as possible. However, the diversity information
from multiple views might be reduced in this way. For the case
of heterogeneous graphs, it is unsuitable to straightforward
minimize |G’ — G"||% owing to their different construction
styles. Inspired by the property that the graph coefficients
could reflect the intrinsic geometric properties of one given
view, which are invariant to exactly such transformations,
we expect their characterization of geometry structure in the

one view to be equally valid for the other view on the
manifold. That is to say, the relationship between two samples
in the oth view is expected to be closer if the distance in the
wth view is larger. Accordingly, we propose the following cost
function as measure of dependence between two views:

N
> v -vilie,
ij=1 '

=u(U" (DY - G*)U"T) 5)

Reg(U’, GY)

where DY denote a diagonal matrix, in which the ith diagonal
element in DY is the sum of all elements in the ith row of G .

Besides, when the graph structure specifically reflects the
reconstruction relationships among samples, i.e., LRR [44],
we try to solve the self-representation issue by the following
form:

U’ =U"G,+E" ©6)

where E” denotes the error term of samples reconstruction.
At this time, we investigate to measure the dependence
between two views from the aspect of space reconstruction.
That is, we expect that reconstruction relationships among
samples in the one view could be equally preserved in the
other view on the manifold. Therefore, we additionally could
utilize the following cost function to measure the consensus
between the oth view and the wth view

Reg(U", GY) = |U" —U"GY)[;
—w(U(Iy - G")(Iy — G*)"U"T). (7)

For convenience, we can further summarize the graph con-
sensus term into a unified form Reg(U", GY) = tr(U'L"U"T)
through (5)—(7), where L" is just dependent on the graph G .
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In the above discussion, we provide two formulas of L based
on the consistent preservation between two views. To sum
up, we could utilize the graph consensus term Reg(U’, G)
to co-regularize the dependence among different views and
simultaneously obtain the graph structure or embedding for
each view.

C. Multiview Learning Framework Based on Graph
Consensus Term

To fully explore the correlations and complementary infor-
mation among multiple views, we employ the graph consensus
term in (5)—(7) to encourage the new representations of differ-
ent views to be close to each other. Accordingly, by combining
graph embedding loss term in each view with graph consensus
term among all views, the overall objective function could be
formulated as follows:

M

M
min D F(G".U") +ir Y QU")
v=1

{UueC”,G*‘“,ISDSM} el

Normalization term

+Ac D Reg(U",GY) (8)
vFEW

Graph embedding loss

Graph consensus term

where A > 0 and A¢ > 0 are two tradeoff parameters
corresponding to the smooth regularized term and graph
consensus term, respectively. Under the assumption that space
structures in different views could reflect intrinsic properties
diversely, the first term ensures that the graphs are constructed
for homogeneous structures. The second term guarantees the
smoothness within each view independently, and the third term
enforces that the learned representations {U’,1 <v < M}
should learn from each other to minimize the gap between
them. In this way, when facing multiview issues, our proposed
framework could deal with the diversity information, smooth
regularized terms, and complementary information among
multiple views jointly.

1) Optimization Procedure: With the alternating optimiza-
tion strategy, (8) could be approximately solved. That is to
say, we solve each view at a time while fixing other views.
Specifically, with all views but U’ fixed, we get the following
optimization problem for the oth view:

min F(G°,U") + A1z U")
U’eC’
M
+ic D (Reg(U", GY) +Reg(U",GY). (9)
1<v#w

Note that in Reg(U", G}), G is dependent on the target
variable U and (9) could not be directly solved. But if G! is
set to be stationary, Reg(U", G) will be reduced a constant
term on U". Without considering the constant terms, (9) will
reduce to the following:

M
Jnin F(G', U") + 2xR(U") +ic D Reg(U", GY) (10)
I<v#w

which looks simpler to be solved. Notably, we assign the
same importance for other views in updating U’. After

finely weighting other views, the performance may be further
improved. For this reason, we optionally utilize the weighting
strategy as follows:

M
[nin F(G", U") + 1xR(U") + Ac 2 a/Reg(U", G¥)

(1)

where o)’ < 0 denotes the importance of the wth view in
updating U", i.e., Zv#w o) = 1. Usually, we can adjust the
importance parameter &, by grid search technology. Besides,
inspired by these works [14], [20], [52], we additionally
provide a self-weighting strategy to improve the efficiency of
the weight assignment, which can be expressed as follows:

o_ _ J(Reg(U".GY) )

Ty fRegU, GD))
where f(-) is a scalar function to adjust the specific-view
weight, such as exponential function.

Suppose that U’ could be effectively calculated by solv-
ing (10), this U® could be continuously used to update
G according to the construction manner of chosen learned
graph method, which inspires us to compute U’ and G
iteratively. The whole procedure to solve (8) is summarized
in Algorithm 1.

Algorithm 1 Optimization for GCMF
Input: The multiview data {X”,V1 < v < M}, the

hyperparameters Ag and Ac, the loss function
F(., ), the constraint C”, the learned graph
manner for G,.

1 for v=1:M do

2 | Construct G" in the loss function F(-, -).

3 | Initialize U” by minimizing the loss function F(-, -)

under the constraint C”.
4 end

5 while not converged do
6 | for v=1:M do

7 Update G for the vth view according to the
construction manner of the chosen learned graph
method.

8 | end

9 | for v=1I1:M do

10 | | Update U® for the vth view by solving (10).
11 | end
12 end

Output: Learned representations {U", 1 <v < M}.

2) Convergence Analysis: Because we adopt the alternating
optimization strategy to solve our proposed framework, it is
essential to analyze its convergence.

Theorem 1: The objective function in (8) is bounded. The
proposed optimization algorithm monotonically decreases the
loss value in each step, which makes the solution converge to
a local optimum.

Proof: In most cases of graph embedding loss function
in oth view, F(G",U") is positive. Thus, it is readily to
be satisfied that there must exist one view which can make
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Fmin = F(G',U") > 0 to be smallest among all views.
Similarly, we also find that the smooth regularized term Q(U")
must be greater than 0. For the graph consensus terms among
views, we could verify that tr(U "LYU “T) is positive-definite
quadratic function if L is a positive-definite matrix. Fortu-
nately, this condition is usually established. Similar to the
discussion the loss function in each view, there must exist
two closest views which could make Cp;, = tr(U "L*U “T) >
0 to be smallest among all pairwise views. And because the
hyperparameters 1z > 0 and A¢ > 0, it is provable that the
objective value in (8) is greater than M F in + M (M — 1)Ciyin.
Therefore, the objective function in (8) has a lower bound.

For each iteration of optimizing problem (8), we could
obtain the learned representations {U",1 < » < M} by
iterative solving (10), which are corresponding to the exact
minimum points of (8) for all views, respectively. Under the
condition that G! is set to be stationary, the value of the
objective function in (10) is nonincreasing in each iteration
of Algorithm 1. Thus the alternating optimization procedure
will monotonically nonincreasing the objective in (8).

Denote the value of loss function in (8) as H, and let {H' },T:1
be a sequence generated by the iteration steps in Algorithm 1,
where T is the length of this sequence. Based on the above
analysis, {H' },T:l is a bounded below monotone decreasing
sequence. According to the bounded monotone convergence
theorem [55] that asserts the convergence of every bounded
monotone sequence, the proposed optimization algorithm con-
verges. Accordingly, Theorem 1 has been proven.

D. Discussion With Other Related Methods

In this section, we give a comprehensive explanation for the
proposed GCMEF, by discussing the differences and relations
between GCMF and other related methods.

Compared with the variants based on CCA, our proposed
graph consensus term is not limited by the dimensional
equivalent across different views. For the HSIC term in (2),
linear kernel is usually used to implement Kx and Ky.
Even though this way is convenient to obtain the optimal
solution, the optimization for the nonlinear case is not efficient.
Besides, Co-reg [19] might meet the similar issue when facing
nonlinear cases. Note that, when the graph consensus term
focuses on the similarity among samples in other views, HSIC
term and the disagreement term in Co-reg could be seen
as special cases of the graph consensus term. For example,
if Reg(U’,GY) = U'HK"HU"', it is equivalent to the
definition of HSIC term with linear kernel. Differently, we can
flexibly choose the common kernel function as similarity
measure for K, such as Gaussian kernel and graph structure
within data, which is more applicable for the nonlinear case.

Compared with those graph structure fusion (GSF)-based
works [13], [14], [15], [16] that fuse multiple graphs into
one common latent space shared by all views, the proposed
GCMF might pay more attention to the complementary efforts
between views. Besides, its variants can be scalably to intro-
duce the common embedding in our framework based on the
regularization term Reg(U, G?), where U denotes the common
embedding for all views. When explicitly considering the
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complementary efforts, the regularization term Reg(U, G))
should be added into (10) to update each view; otherwise,
Zﬁv#w Reg(U?, GY) in (10) should be just substituted with
the regularization term Reg(U, G). In contrast to above
graph-based multiview works, another classical type of graph
fusion-based works [8], [50], [54] aim to learn the consensus
graph for all views. Even though the proposed GCMF mainly
focuses on the embeddings for multiple views, its variants
can be also readily extended into such case. For example
with GSF [50], first, the shared embedding U is used to
approximate the fused affinity matrix; then, the regularization
term Reg(U, G,) is equal to graph approximation term in
GSF,; finally, the low-rank constraint is added on the consensus
graph G.. In this way, we can implement the transform process
from GCMF to GSF.

By comparing the proposed GCMF with its related works,
we can summarize the following advantages in terms of
exploitation for multiview information and the flexibility of
GCMFE

1) For most of existing multiview learning frameworks, the
limitation of dimensional equivalent makes it not flexible
for the extensions of those works. Differing from those
methods, GCMF can flexibly formulate the dimensional-
ity of each view, which eliminates this limitation. More
importantly, GCMF can incorporate nonlinear universal
cases by exploiting the graph structure information based
on learned representations.

2) GCMF is a flexible and scalable multiview framework,
which not only can extend most single-view graph
embedding methods into the multiview scenario, but also
can maintain compatibility with existing GSF methods.
Furthermore, to preserve the stability of the multiview
framework, it co-regularizes different views through the
graph consensus term based on learned graphs, mean-
while preserving the intrinsic property of each view.

IV. SPECIFIC IMPLEMENT

In this section, we choose two graph embedding methods,
consisting of LE [56] and LLE [29], to provide a typical
implement for our proposed framework, named GCMF-LLE.

A. Construction Process of GCMF-LLE

LLE lies on the manifold structure of the samples space
to preserve the relationships among samples. Based on the
assumption that each sample and its neighbors lie on or close
to a locally linear patch of the manifold, then we obtain the
weights matrix $° € RV by minimizing the following
reconstruction error:

N
2. |Xi— 2 Six;
i=1 }

JEN{i

2
(13)

2

where N{i} denotes the neighbors of the ith sample X?7.

By solving the above equation, we could obtain graph structure

S’ to reflect the intrinsic properties of the samples space.

We expect their characterization of local geometry in the
original space to be equally valid for local patches on the
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manifold. Each original sample X! is mapped to a new
d’-dimensional coordinate. Additionally, we constrain the
learned representations U7, 1 <i < N to have unit covariance.
With simple algebraic formulation, the above cost problem can

be further transformed as follows:
min w(U'd - sH' I - $HU")

st. U'U =1. (14)
Hereto, we determine that F(U") and C” are responding to
tr(U° (I — ST (1 - S")U"T) and U"U"" = Iy, respectively.
LE aims at preserving the local neighborhood structure on
the data manifold, which constructs the weight matrix that
describes the relationships among the samples. Specifically,
the similarity matrix G, is to denote the weight coefficients,
which could choose the common kernel function as our
similarity measure, such as linear kernel, polynomial kernel,
and Gaussian kernel. Combining this with the graph consensus
term in (5) between the v view and wth view, we could define

L" as follows:
LY =

D" — G” (15)

w

where D" denotes a diagonal matrix and Djj = >, G}
By rewriting the normalized matrix L*, we could get
LY =1y — D‘“fl/zG*“’Dwfl/z. Therefore, we can obtain the
following graph consensus term between two views:

Reg(U’, G?) = tr(U(Iy — D" 7'*G.D" " UT). (16)

According to the above construction of single-view graph
loss function and graph consensus term between views,
we have specified each term in objective function in (8) and
its constraint terms. In this way, we could extend single-
view-based LLE into multiview setting, named multiview LLE
(GCMF-LLE). Accordingly, the whole objective function for
GCMF-LLE can be formulated as follows:

min O (U', U?,...,U")

M M
=> (U =)' U =SHU") +ir > U")
v=1 v=I1
+/’{C Ztr(UU(IN _ Dw—l/ZG:)Dw—l/Z)UUT)
vFW
st. U'U" =1,

1<v<M. (17)

Because the constraint terms normalize the scale of
{(U',U?, ..., UM}, the smooth regularized term (U") could
be neglected in the objective function of GCMF-LLE. That is,
the above equation could be reduced as follows:

min O(U', U?,...,U")

M
= > uw(U'd-s""a-sHu")
v=1
+ac D w(U Uy — D" ?GrD T HUT)
v#EW
st. U'U" =1,

1<ov<M. (18)

B. Optimization

Referring to the optimization procedure for GCMLEF, (18)
could be approximately solved. When solving the oth view,
with all views fixed but U", we get the following optimization
for the vth view:

min O(U”) = (U = ") (I — SHU"")
M
+ AC Z tr(U"(IN _Dwfl/ZG;qufl/Z)UvT)
1<v#w

st. U0 =1. (19)

Due to the attributes of the matrix trace, the above equation
is equivalent to the following optimization problem:

min O(U") = | U (I — $*)T (I - 8?)

M
+ iC z (IN_Dwfl/ZG;qufl/Z)UvT

I<v#w

st. U'U" =1. (20)

Under the constraint condition U'U" = I , the above equa-
tion could be efficiently solved by eigenvalue decomposition.
In this way, we could solve all the variables {U", G%, 1 < v <
M} iteratively.

According to the convergence analysis for our framework in
Section III-C, it could be easily verified that the optimization
procedure for GCMF-LLE will be converged within limited
iteration steps. We also use many experiments to verify the
convergence property of the proposed method. Fig. 2 shows the
relation between the objective values and iterations. As shown
in Fig. 2, we can see that with the iterations increase, the
objective function value of the proposed method decreases fast
and reaches a stable point after a few iterations, while the
classification accuracy increases dramatically during the first
small number of iterations and then reaches the stable high
level for these four benchmark databases. For example, for
the Holidays dataset, the proposed method reaches the stable
point in terms of classification accuracy within about fifteen
iterations. Both theoretical proof and experiments demonstrate
that the proposed method can obtain the local optimum quickly
and has good convergence property.

C. Time Complexity Analysis

The computational cost for GCMF-LLE mainly is composed
of two parts. One is the construction for the variables {S”,i <
v < M} and the initialization for the variables and {U",i <
v < M}, which solves §” and U" according to (13) and (14).
The other is to iteratively update K and U", which needs to
perform the computation of similarity matrix and eigenvalue
decomposition in each iteration, respectively. Therefore, the
time complexity for GCMF-LLE is about O(T x M x N?),
where T is the iteration times of the alternating optimization
procedure. Note that, based on the convergence of the opti-
mization procedure of GCMF-LLE, the iteration times 7" will
be a limited number. Therefore, its time complexity is linear
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Fig. 2. Convergence validations on four datasets. (a) Yale dataset. (b) Holi-
days dataset. (c) ORL dataset. (d) Corel-1K dataset.

with respect to LLE, which can imply that the optimization
for GCML is efficient.

D. Discussion

LLE and LE are two graph embedding methods based on
self-representation and geometric structure styles, respectively,
in which LLE is used to construct the graph learning loss
term and LE is used to regularize the dependence between
two views in (8). Note that, LLE is based on manifold
space reconstruction, which aims to preserve reconstruction
relationships among samples. Therefore, when LE is utilized
to construct the graph learning loss term, we also consider that
LLE is used to construct the graph consensus term between
two views by (7). To facilitate the solution, we choose the
former to specify the graph learning loss term in (8) in this
article.

V. EXPERIMENTS

In this section, we introduce the details of several exper-
iments on document classification, face recognition, and
image retrieval, to verify the effectiveness of our proposed
framework.

A. Datasets and Compared Methods

In our experiments, six datasets are used to validate the
superior performance of our framework, including document
datasets (3Source! and Cora?), face datasets(ORL? and Yale*),
and image datasets(Corel-1K> and Holidays®). Two document
datasets are two benchmark multiview datasets. For the face

Uhttp://mlg.ucd.ie/datasets/3sources.html

Zhttp://lig-membres.imag.fr/grimal/data. html

3hitp://www.U.K..research.att.com/facedatabase.html

“http://cve.yale.edu/projects/yalefaces/yalefaces.html

Shttps://sites.google.com/site/dctresearch/Home/content-based-image-
retrieval

Ohttp://lear.inrialpes.fr/jegou/data.php
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and image datasets, we utilize different descriptors to extract
their corresponding multiview features, in which some samples
in these datasets are shown in Fig. 3. The detailed information
of these datasets is summarized as follows.

1) 3Source consists of three well-known news organiza-
tions: BBC, Reuters, and Guardian, where each news is
manually annotated with one of six labels. Because each
news source can be used as one view, we choose these
news sources as a multiview benchmark dataset.

2) Cora contains 2708 scientific publications of seven
categories, where each publication document could be
described by content and citation. Thus, Cora could be
considered as a two-view benchmark dataset.

3) ORL is collected from 40 distinct subjects, where ten
different images are gathered for each subject. For each
person, the images are taken at different times, varying
the lighting, facial expressions, and facial details.

4) Yale is composed of 165 faces from 15 peoples, which
has been widely used in face recognition. Each person
has eleven images, with different facial expressions and
facial details.

5) Corel-1K manually collects 1000 images corresponding
to ten categories, such as human beings, buildings,
landscapes, buses, dragons, elephants, horses, flowers,
mountains, and foods. And there are one hundred images
in each category.

6) Holidays consists of 1491 images corresponding to
500 categories, which are mainly captured for sceneries.

Even though text and images adopted in experiments don’t
explicitly contains the graph structure information, there exists
the relationship among samples in the above datasets, such
as similarity and reconstruction relationships. Based on the
similarity or reconstruction relationship among samples, the
proposed GCMF can build the graph-structure data for all
views to exploit their intrinsic information among multiple
views, where each sample (text or image) can be seen as one
node in the graph.

To demonstrate the superior performance of our framework,
we compare GCMF-LLE with the following methods, where
the first two are single-view methods with the most informative
view, and the others are multiview learning methods.

1) BLE is Laplacian eigenmaps (LE) [56] with the most
informative view, i.e., one that achieves the best perfor-
mance with LE.

2) BLLE is LLE [29] with the most informative view,
similar to BLE.

3) GFSC [53] is a multiview spectral embedding based on
multigraph fusion to approximate the original graph of
individual view.

4) GMC [8] is a multiview graph-based method to learn
the common graph shared by all views.

5) GMA [21] is a general multiview learning framework,
solving the joint and relaxed problem of the form of
QCQP.

6) MDcR [39] is a multiview dimensionality reduction
method, which explores the correlations of different
views based on HSIC term.
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Fig. 3.
(d) Some examples in Corel-1K dataset.

7) AMGL [14] is an auto-weighted multiple graph learning
method, which could allocate ideal weight for each view
automatically.

B. Document Classification

In this section, we evaluate the experimental results of the
document classification tasks on 3Source and Cora datasets.
For these two datasets, we randomly select 50% of the samples
as training samples and the remaining 50% of the dataset as
testing samples every time. All the methods are conducted to
project all samples to the same dimensionality. Specifically,
the dimensions of the embedding obtained by all methods
all maintain 20 and 30 dimensions. We adopt INN as the
classifier to classify the testing ones. After conducting this
experiment 30 times with different random training samples
and testing samples, we calculate the mean classification
accuracy (MEAN) and max classification accuracy (MAX)
on 3Source and Cora datasets as the evaluation index for all
methods. Then, we can summarize the evaluation indexes of
MEAN and MAX results in Tables II and III.

Through the experimental results of Tables II and III, it is
clear that the proposed GCMF-LLE is significantly superior to
its counterparts in most situations. Besides, the performance of
the GCMF-LLE is more stable than other compared methods.
For example, GMC can obtain promising results on 3Source

Examples images in datasets. (a) Some examples in Yale dataset. (b) Some examples in Holidays dataset. (c) Some examples in ORL dataset.

TABLE 11
CLASSIFICATION ACCURACY ON 3SOURCE DATASET
Methods Dims=20 Dims=30
MEAN(%) MAX(%) MEAN(%) MAX(%)
BLE 66.47 74.11 59.72 69.41
BLLE 66.50 76.71 66.78 75.94
GFSC 76.01 84.31 80.30 88.41
GMC 80.39 88.23 80.84 90.19
GMA 53.88 76.45 54.37 73.56
MDcR 81.25 87.05 78.50 85.88
AMGL 49.92 57.64 48.15 56.47
GCMF-LLE 82.64 89.41 81.25 90.93
TABLE III
CLASSIFICATION ACCURACY ON CORA DATASET
Methods Dims=20 Dims=30
MEAN(%) MAX(%) MEAN(%) MAX(%)

BLE 58.98 60.85 61.05 63.44
BLLE 59.84 63.61 60.86 65.31
GFSC 38.39 42.18 39.04 42.18
GMC 42.06 44.64 42.06 44.77
GMA 71.11 72.35 71.52 72.05
MDcR 55.73 57.45 57.19 59.01
AMGL 63.71 65.73 66.90 69.57
GCMF-LLE 73.7 75.23 73.45 75.84

dataset while the performance degrades sharply on the Cora
dataset; in contrast to GMC, GMA can obtain the superior
performance on the Cora dataset but get the poor results on
the 3Source dataset.
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TABLE IV

IMAGE RETRIEVAL ACCURACY ON HOLIDAYS DATASET

Methods Precision (%) Recall (%) MAP (%) Fi-Measure
BLE 72.92 56.16 86.46 31.73
BLLE 59.84 63.61 80.86 30.73
GFSC 65.82 50.43 79.76 28.55
GMC 69.16 66.18 78.54 33.18
GMA 65.22 50.05 78.32 28.32
MDcR 78.49 60.72 88.52 34.24
AMGL 68.09 51.92 84.01 29.46
GCMF-LLE 79.13 61.14 89.56 34.49

05F 1

0.4 1 L 1 I n L L n
BLE BLLE GFSC GMC GMA  MDcR AMGLGCMF-LLE

Fig. 4. Face recognition accuracy on Yale dataset.
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Fig. 5. Face recognition accuracy on ORL dataset.

C. Face Recognition

In this section, we evaluate the experimental results of
the face recognition tasks on Yale and ORL datasets. For
these two datasets, we first extract their multiview features by
EDH [57], LBP [58], and Gist [1]. Then, all the methods are
conducted to project all samples to the same dimensionality
and the INN classifier is adopted to calculate the recognition
results, where the dimension of the embedding all maintains
30 dimensions. Note that we randomly select 50% of the
samples as training samples and the remaining 50% of the
samples as testing samples every time and run all methods
30 times with different random training samples. Because
the task of face recognition mainly cares about recognition
accuracy, we choose recognition accuracy as the evaluation
index in this part. The boxplot figures of accuracy values
of all methods on Yale and ORL datasets are shown in
Figs. 4 and 5.

Through the experiment results of the above two experi-
ments in Figs. 4 and 5, the multiple view performances are
usually better than the independent view. This demonstrates
that multiple views can improve the performance of face
recognition. Among these multiview methods, we can find that

GCMF-LLE outperforms its comparing methods in most situa-
tions, which shows the superiority of the proposed framework.

D. Image Retrieval

In this section, we conduct two experiments on Holidays and
Corel-1K datasets for image retrieval. For these two datasets,
we both employ three image descriptors of MSD [59], Gist [1],
and HOC [60] to extract multiview features for all images. All
the methods are conducted to project all samples to the same
dimensionality. In this part, the dimensions of the embedding
obtained by all methods maintain 30 dimensions. Besides,
[, distance is utilized to measure similarities between samples.
At the aspect of the validation index, we choose several
common indexes, including average precision rate (Precision),
average recall rate (Recall), mean average precision (MAP),
and Fj-Measure, to validate the performances for image
retrieval. Actually, high Precision and Recall are required
and Fj-Measure is put forward as the overall performance
measurement. Then, we conducted this experiment on these
two datasets repeatedly for 20 times. For Holidays dataset,
we summarize these experiment results, including Precision,
Recall, MAP, and F;-Measure, on top 2 retrieval results in
Table IV. For Corel-1K dataset, we randomly select ten images
as query ones for each category. Afterward, the relation curves
on validation indexes are drawn in Fig. 6.

Through these experimental results in Table IV and Fig. 6,
it can be readily found that our proposed GCMF-LLE achieves
better performance than the other compared methods in
most situations in the field of image retrieval. The proposed
GCMF-LLE could integrate compatible and complementary
information from multiple views and obtain a better embed-
ding from these views. Therefore, the results in Table IV
and Fig. 6 could show that our framework can achieve good
performance in the field of face recognition. Note that the
performance of BLE is bad because of its unreasonable way
to deal with multiview features.

E. Sensitivity Analysis

To fully validate the effectiveness of GCMF-LLE, this
subsection mainly analyzes the influence on the performance
of the parameter A¢ introduced in GCMF-LLE. As is shown
in Fig. 7, which summarizes the classify accuracy values of
3Source, Cora, ORL, and Yale datasets, where the dimension-
ality of low-dimensional embedding is 30. It is easy to find
that the oscillation of accuracy becomes very stable, which
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‘ ‘ F. Stability Analysis
0.9 09
T S S To validate the model stability of GCMF-LLE, we conduct
the cross-validation experiments under different settings. To be
i specific, we run the twofold, threefold, fivefold, and tenfold
o cross-validation experiments on the 3Source, Cora, ORL, and
Yale datasets, respectively. For the example of fivefold cross-
oo Coo e validation, onefold and the other fourfold are used for testing
@ ® data and training data, respectively, thus the validation process
s ! is repeated five times, and the average accuracy over these
R = T R e S, 0O FETE ATy et . . . .
. o five runs is used as the final result. And the dimensionality
” v of low-dimensional embedding is 30. We summarize the
average accuracy values of different cross-validation settings
s on the four datasets in Table V. Through the results in
o - Table V, we can find that the variation of the performance
K T oo w e o ar s o g o0 of cross-validation under different settings is relatively stable.
© @ That is, the proposed GCML is a stable multiview learning
i o ) framework.
Fig. 7.  Sensitivity analysis on four datasets. (a) 3Source dataset. (b) Cora

dataset. (c¢) Yale dataset. (d) ORL dataset.

indicates that the performance is not so sensitive to those
hyperparameters. More importantly, there exists a wide range
for each hyper-parameter in which relatively stable and good
results can be readily obtained.

G. Visualization of GCMF-LLE

To visualize the sample distribution learned by GCMF-
LLE, we first adopt -SNE [61] to project original data and
learned features into the 2-D subspace, and then visualize
their distributions. This experiment is conducted on the Cora
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TABLE V
CROSS-VALIDATION RESULTS (%) ON FOUR DATASETS

Setting ~ Cora  3Source  Yale ORL
2-fold 73.19 79.84 87.06  89.14
3-fold 73.82 79.27 87.17  90.79
5-fold 74.41 81.14 88.68  92.53
10-fold  74.96 82.23 9043  92.55
(@) (b)

Fig. 8.  Visualization of GCMF-LLE on Cora dataset. (a) Original data.
(b) GCMF-LLE.

dataset, and we visualize the learned features in the first view,
shown in Fig. 8. Obviously, the distributions of original data
are disordered. After GCMF-LLE is conducted, the samples
can be readily separated into several clusters, which can
validate the effectiveness of GCMF-LLE.

H. Discussion

For the experiment results in Tables II and III on text
classification, we can find that GCMF-LLE outperforms other
comparing methods in most situations. Similarly, our proposed
GCMF-LLE also obtain promising performance in face recog-
nition tasks through the evaluations in Figs. 4 and 5. As shown
in Table IV and Fig. 6, our method could also be utilized to
execute the image retrieval task. From the above evaluations,
it is readily seen that the representations obtained by our
method could be more effective and suitable for multiview
features.

According to the above experimental results, we can drive
the following findings. Compared with BLLE and BLE,
GCMF-LLE could achieve significantly better performance
by integrating complementary information among different
views meanwhile preserving its intrinsic characteristic in each
view. Compared with other multiview methods, GCMF-LLE
can obtain more robust and efficient performance due to
flexibility and stability of GCMF. Note that the experimen-
tal results of our proposed GCMF-LLE on six datasets are
without fine-tuning for the views’ weights, and usage of fine-
tuning (self-weighting or grid searching strategy) might further
improve its performance. Besides, we empirically find that
GCMF-LLE could converge within limited iterations in most
experiments.

Notably, graph convolution network (GCN) [62], [63] has
gained extensive attention from researchers, which is also con-
sidered as graph-based work. Different from the graph-based
work investigated in this article, GCN is built on the explicit
graph structure and label information. GCMF-LLE is an
unsupervised multiview method, and those datasets in the
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experiments cannot provide explicit graphs besides Cora. Even
though GCN is not suitable to be utilized as a comparing
method in this article, we aim to combine our proposed GCMF
with GCN to solve the graph learning problems under the
multiview scenario.

VI. CONCLUSION

In this article, we propose a unified and scalable multiview
learning framework, named GCMF, which aims at leveraging
most existing graph embedding works into one formula via
introducing the graph consensus term. GCMF encourages all
views to learn with each other according to the complemen-
tarity among views and explores the learned graph structure
in each view independently to preserve the diversity property
among all views. Based on the sufficient theoretical analysis,
we show that GCMF is a more robust and flexible multiview
learning framework than those existing multiview methods.
Correspondingly, an algorithm based on alternating direction
strategy is proposed to solve GCMF. To further facilitate the
related research and the understanding of GCMF, we pro-
vide one typical implementation of the multiview extension
for LLE, called GCMF-LLE. Extensive experimental results
demonstrate that the proposed GCMF-LLE can effectively
explore the diversity information and underlying complemen-
tary information of the given multiview data, and outperforms
its compared methods. With the rapid development of graph
neural networks [64], [65], [66], how to combine our proposed
GCMF with GCN to solve the multiview problems with graph
information is very meaningful yet full of challenges, and we
will consider it in our future work.
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