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Abstract— In recent years, multiview learning technologies1

have attracted a surge of interest in the machine learning domain.2

However, when facing complex and diverse applications, most3

multiview learning methods mainly focus on specific fields rather4

than provide a scalable and robust proposal for different tasks.5

Moreover, most conventional methods used in these tasks are6

based on single view, which cannot be readily extended into7

the multiview scenario. Therefore, how to provide an efficient8

and scalable multiview framework is very necessary yet full9

of challenges. Inspired by the fact that most of the existing10

single view algorithms are graph-based ones to learn the complex11

structures within given data, this article aims at leveraging12

most existing graph embedding works into one formula via13

introducing the graph consensus term and proposes a unified and14

scalable multiview learning framework, termed graph consensus15

multiview framework (GCMF). GCMF attempts to make full16

advantage of graph-based works and rich information in the17

multiview data at the same time. On one hand, the proposed18

method explores the graph structure in each view independently19

to preserve the diversity property of graph embedding methods;20

on the other hand, learned graphs can be flexibly chosen to con-21

struct the graph consensus term, which can more stably explore22

the correlations among multiple views. To this end, GCMF can23

simultaneously take the diversity and complementary information24

among different views into consideration. To further facilitate25

related research, we provide an implementation of the multiview26

extension for locality linear embedding (LLE), named GCMF-27

LLE, which can be efficiently solved by applying the alternating28

optimization strategy. Empirical validations conducted on six29

benchmark datasets can show the effectiveness of our proposed30

method.31

Index Terms— Graph consensus term, iterative alternating32

strategy, multiview learning, unified framework.33
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I. INTRODUCTION 34

W ITH the rapid development of the information era, 35

more and more data can be obtained from different 36

domains or described from various perspectives, which have 37

gained extensive attention from researchers in recent years. 38

For examples, an image could be represented by different 39

visual descriptors [1] to reveal its color, texture, and shape 40

information; the document could be translated as different 41

versions via various languages [2]. These data collected from 42

multiple views depict different perspectives for one object, 43

indicating that one view may contain some knowledge infor- 44

mation that other views do not involve. A feasible manner to 45

deal with multiview data is proposed to concatenate different 46

views together as one view. But this way not only lacks 47

physical meaning owing to its specific statistical property 48

in each view, but also ignores the complementary nature of 49

different views. Therefore, how to effectively discover the rich 50

information of multiple views and the underlying structures 51

within multiview data is the main challenge. To take full 52

advantage of rich information in multiview data, various mul- 53

tiview learning methods [3], [4] have been well investigated in 54

many applications (e.g., classifications [5], [6], clustering [7], 55

[8], dimension reduction [9], [10] reidentification [11], [12], 56

etc). Among these works, one popular class of multiview 57

learning methods [13], [14], [15], [16] is to consider the 58

weighted combination of different views to explore a common 59

latent space shared by all views in integrating multiview infor- 60

mation. For example, auto-weighted multiview graph learning 61

(AMGL) [14] is an auto-weighted multiple graph learning 62

method, which can automatically allocate ideal weight for 63

each view to find common low-dimensional representations. 64

Unlike these works above, to further guarantee the comple- 65

mentary effects across different views, these algorithms in co- 66

training [17], [18] and co-regularization [19], [20] styles are 67

developed to explore the complementary information among 68

different views. The former iteratively maximizes the mutual 69

agreement on different views to guarantee the consistency of 70

different views. The latter employs co-regularization terms 71

of discriminant functions, added into the objective function, 72

to ensure the consensus among distinct views. However, these 73

methods may produce unsatisfactory results when facing such 74

multiple views that are highly related but slightly different 75

from each other. More importantly, these above methods 76

mainly focus on specific fields so that cannot provide a unified 77

framework for different tasks. Even though some general 78
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multiview frameworks [21], [22], [23] have been proposed in79

recent years, but these works usually tend to some specific80

styles of multiview models, such as multiview subspace learn-81

ing. To this end, there are not still sufficient researches on gen-82

eralized multiview frameworks. Inspired by graph embedding83

framework [24] that most of subspace learning methods [25],84

[26] and their kernel extensions [27], [28] could be also cast85

as special embedding methods based on the graph, and the fact86

that most existing multiview works are graph-based ones, this87

article attempts to handle these above issues based on graph88

embedding technology.89

This article proposes a novel framework, named graph90

consensus multiview framework (GCMF), for multiview learn-91

ing problems. GCMF aims to provide a scalable and robust92

proposal for different multiview tasks, by leveraging most93

existing graph embedding works based on single view into94

a unified formulation. Specifically, to preserve the diversity95

property of intrinsic information in each view, this model96

explores the intrinsic graph structure in each view based on97

single-view graph method; the graph consensus term based98

on learned graphs is proposed to consider the correlations99

among multiple views jointly, which can fully exploit the100

complementary information among different learned represen-101

tations. For solving the proposed GCMF, this article devel-102

ops a rough paradigm based on iterative alternating strat-103

egy, and the self-weighting strategy is optionally utilized104

in the optimization process. To facilitate related multiview105

researches and improve the convenience for readers, the106

proposed framework is utilized to implement the multiview107

extension of locality linear embedding (LLE) [29], named108

GCMF-LLE. Finally, extensive experiments based on the109

applications of document classification, face recognition, and110

image retrieval validate the ideal performance of our proposed111

method. The major contributions in this article can be listed as112

follows.113

1) We propose a novel unified framework named GCMF114

to leverage most of existing single-view works based on115

the graph into a unified formula, which can be used in116

complex and diverse applications.117

2) Graph consensus term is proposed to exploit the com-118

plementary information among different learned repre-119

sentations, in which the construction manner for learned120

graph can be flexibly chosen according to the practical121

tasks.122

3) An implementation of the multiview extension for LLE123

is provided to construct a novel multiview learning124

method, named GCMF-LLE, which can facilitate the125

usage and understanding for readers.126

The remainder of this article is organized as follows.127

In Section II, we briefly review multiview learning methods128

closely related to our method; in Section III, we describe129

the construction procedure of the proposed GCMF and its130

optimization algorithm; in Section IV, the proposed framework131

is utilized to implement the multiview extension of LLE;132

in Section V, extensive experiments on six datasets evaluate133

the effectiveness of our proposed approach; in Section VI,134

we make the conclusion of article.135

II. RELATED WORK 136

In this section, we review a brief comprehension of the 137

related works close to the proposed method, which can be 138

divided into three following categories. 139

A. CCA-Based Multiview Methods 140

Canonical correlation analysis (CCA) [30] and its kernel 141

extension [31] are representative methods for cross-view fea- 142

tures alignment. Suppose that two sets of X and Y , consisting 143

of N observations, are drawn jointly from a probability distrib- 144

ution. CCA-based multiview methods [21], [32], [33] employs 145

CCA to project the two views into the common subspace by 146

maximizing the cross correlation between two views, which 147

can be expressed as follows: 148

Corr(X, Y ) = tr
�
W T

X XY T WY
�

(1) 149

where W X and WY denote the projecting matrix of the set X 150

and the set Y , respectively. tr(·) is the trace of the matrix. 151

In particular, CCA is further generalized in the multiview 152

situation, named multiview CCA (MvCCA) [32], which can 153

handle multiview data with more than two views. Multiview 154

discriminant analysis [33] is proposed to extend LDA [28] 155

into a multiview setting, which projects multiview features into 156

one discriminative common subspace. Generalized multiview 157

analysis (GMA) [21] solves a joint and relaxed problem of the 158

form of the quadratic constrained quadratic program (QCQP) 159

over different feature spaces to obtain a common linear 160

subspace, which generalizes CCA for multiview scenario, i.e., 161

cross-view classification and retrieval. Inspired by the advance 162

of deep neural networks [34], Andrew et al. [35] proposed 163

deep CCA to capture the association of high semantic level 164

among multiview data by associating the representation among 165

multiple views at the higher level. However, dimensionalities 166

of different views must keep equal with each other in these 167

CCA-based works. 168

B. HSIC-Based Multiview Methods 169

Hilbert–Schmidt independence criterion (HSIC) [36] mea- 170

sures dependence of the learned representations of different 171

views by mapping variables into a reproducing kernel Hilbert 172

space, which could be expressed as follows: 173

HSIC(X, Y ) = (N − 1)−2tr(K X H K Y H) (2) 174

where K X and K Y denote the Gram matrix of the set X and 175

the set Y , respectively. H = I − N−111T centers the Gram 176

matrix K X or K Y to have zero mean in the feature space. 177

HSIC-based multiview learning methods [37], [38], [39], 178

[40], [41], [42], [43] explore complementary information by 179

utilizing HSIC to measure the correlations of different views. 180

Compared to those methods based on CCA, such HSIC-based 181

multiview methods can relieve the restriction of equal dimen- 182

sionalities for different views. Among them, the work [37] 183

employs a kernel dependence measure of HSIC to quantify 184

alternativeness between clustering solutions of two views, 185

which iteratively discovers alternative clusterings. Similarly, 186
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the work [39] exploits the complementarity information of187

multiple views based on HSIC to enhance the correlations188

(or penalize the disagreement) across different views during189

the dimensionality reduction, and explores the correlations190

within each view jointly. Latent multiview subspace clustering191

(LMSC) [40] is proposed to seek the underlying latent repre-192

sentation shared by all views, which simultaneously combines193

the HSIC term to discover the complementary information194

from multiple views. Similar to these works, similarity and195

diversity induced paired projection (SDPP) [42] introduces196

the HSIC term as a co-regularization to explicitly enforce the197

diversity, and removes the view-specific information that does198

not contribute to task. However, these HSIC-based works usu-199

ally incorporate the inner product kernel to construct the HSIC200

term, which might lead to unsatisfactory performance when201

facing those nonlinear cases. Differing from those methods202

above, graph consensus term proposed in this article not only203

can overcome the limitation of dimensional equivalent across204

views but might be more applicable for the nonlinear cases.205

C. Graph-Based Multiview Methods206

Generally, most of multiview learning methods belong to the207

category of the graph-based method. At the aspect of graph-208

based methods, traditional graph-based methods mainly aim209

to explore the relationships among data points, and its unified210

form can be generally expressed as follows:211

min
Uv∈Cv

F(Gv , U v ) + λ�(U v ) (3)212

where Cv denotes the different constraints on the embedding213

U v . F(·, ·) is the loss function defined on the embedding214

U v and the graph Gv , and �(·) stands for the regularization215

term of the embedding Uv . Graph embedding framework [24]216

implies that most of subspace learning methods [25], [26] and217

their kernel extensions [27], [28] could be also cast as special218

graph-based embedding methods like the form in (3). Other219

graph-based ones are using the so-called self-expressiveness220

property, and representative works include low-rank represen-221

tation (LRR) [44], [45], sparse subspace learning [46], [47],222

etc.223

On the contrary to traditional graph-based methods, graph-224

based multiview methods aim to exploit the intrinsic structure225

information within multiview data. Thereinto, the most rep-226

resentative group of multiview methods [8], [14], [48], [49],227

[50], [51], [52], [53], [54] aim to fuse multiple features or228

graphs into one common latent space shared by all views.229

Multiple kernel learning (MKL) [49], [52] is also a natural way230

to integrate different views based on the direct combination of231

different views and learn a common low-dimensional represen-232

tation. Different from MKL, parameter-free multiview learning233

methods [14] provide a self-weighting strategy to fuse multiple234

graph information without additional parameters. Besides,235

learning a shared graph among all views is also an efficient236

manner to integrate the diversity information within multiview237

data, e.g., graph-based multiview clustering (GMC) [8] and238

multiview latent proximity learning (MLPL) [54]. However,239

these above methods do not explicitly consider the comple-240

mentarity efforts across different views. Besides, these existing241

TABLE I

IMPORTANT NOTATIONS USED IN THIS ARTICLE

graph-based methods for single view are not applicable for 242

extending to the multiview setting directly, so that we cannot 243

take full advantage of these works. Unlike these graph-based 244

methods, this article approximately regards most single-view 245

methods as graph-based works and leverages most of them 246

into a unified framework while comprehensively considering 247

rich information within multiview data. 248

III. METHODOLOGY 249

In this section, we discuss the intuition of our proposed 250

framework, named GCMF. Here, we introduce the graph 251

consensus term to regularize the dependence among different 252

views. For clarity, the flowchart of GCMF is shown in Fig. 1. 253

Subsequently, a rough paradigm based on iterative alternating 254

strategy is proposed to solve the solution of GCMF. Finally, 255

we provide a more comprehensive explanation by comparing 256

it with other related multiview learning methods. For conve- 257

nience, the important notations used in the remainder of this 258

article are summarized in Table I. 259

A. Problem Definition 260

Given a multiview dataset consisting of M views, the 261

data in the vth view (1 ≤ v ≤ M) can be denoted as 262

Xv = {xv
1, xv

2, . . . , xv
N }, in which N is the number of samples. 263

The proposed method aims to obtain the graph structure or 264

the embedding in each view under the multiview setting. 265

We separately employ Gv ∈ R
N×N and U v ∈ R

dv×N to denote 266

the graph structure or the embedding in the vth view, where 267

dv is the dimensionality of the vth view. Differing from the 268

graph Gv defined on Xv , Gw
∗ is the graph constructed by the 269

learned embedding Uv . For the multiview setting, a naive way 270

is to incorporate all views in (3) directly as follows: 271

min
{Uv∈Cv ,1≤v≤M}

M�
v=1

F(Gv , U v ) + λ�(Uv ). (4) 272

Intuitively, this naive way implements graph embedding prob- 273

lem for each view independently and fails to exploit the 274

diversity information of these multiple views. More impor- 275

tantly, this way neglects the correlations of these multiple 276

views, so that the complementary information among multiple 277

views cannot be made full advantage to enforce all views 278

to learn from each other. Accordingly, how to efficiently 279

discover the complementary information among views is the 280
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Fig. 1. Flowchart of the proposed GCMF. Given a collection of samples with M views, e.g., {X1, X2, . . . , X M }. GCMF first explores the graph structure Gv

in each view by graph embedding model independently. Based on the graph Gv , we can initialize the embedding Uv in the vth view. Later, mutual learning
based on graph consensus term Reg(Uv , Gw∗ ) is to enforce different views to learn with each other, where the graph Gw∗ is built on the learned embedding
Uv . With the specific-view representations {U1, U2, . . . , U M } learned, the kNN classifier can be utilized to obtain the final classification results.

key point. Besides those works based on CCA or HSIC,281

traditional solutions usually minimize the difference between282

the embeddings of pairwise views directly. However, such283

methods are only suitable for the case that the dimensionalities284

are equal for different views. For these reasons, it is necessary285

and worthy to develop a novel co-regularization term with286

better scalability and robustness to enforce different views to287

mutually learn.288

B. Graph Consensus Term289

In this article, we investigate to measure the dependence290

among all views based on graph structures, which reveals the291

relationships among all samples in each view. Specifically,292

we attempt to construct the view-structure consensus in terms293

of learned graphs to regularize the dependence between two294

views. Taking the example with two graphs Gv
∗ and Gw

∗ in295

the vth view and the wth view, if Gv
∗ and Gw

∗ are obtained296

by the same style of graph approaches, discovering similarly297

property of individual view, we call such two graphs as homo-298

geneous graphs; in contrast, if two graphs are solved by the299

different style of graph approaches, we call such two graphs as300

heterogeneous graphs. When facing the case of homogeneous301

graphs, directly minimizing the gap �Gv
∗ − Gw

∗ �2
F between302

two graphs is to make the relationships among all samples,303

as consistent as possible. However, the diversity information304

from multiple views might be reduced in this way. For the case305

of heterogeneous graphs, it is unsuitable to straightforward306

minimize �Gv
∗ − Gw

∗ �2
F owing to their different construction307

styles. Inspired by the property that the graph coefficients308

could reflect the intrinsic geometric properties of one given309

view, which are invariant to exactly such transformations,310

we expect their characterization of geometry structure in the311

one view to be equally valid for the other view on the 312

manifold. That is to say, the relationship between two samples 313

in the vth view is expected to be closer if the distance in the 314

wth view is larger. Accordingly, we propose the following cost 315

function as measure of dependence between two views: 316

Reg(U v , Gw
∗ ) =

N�
i, j=1

��U v
i − U v

j

��2

2
Gw

∗i j
317

= tr
�
Uv

�
Dw

∗ − Gw
∗
�
Uv T �

(5) 318

where Dw
∗ denote a diagonal matrix, in which the i th diagonal 319

element in Dw
∗ is the sum of all elements in the i th row of Gw

∗ . 320

Besides, when the graph structure specifically reflects the 321

reconstruction relationships among samples, i.e., LRR [44], 322

we try to solve the self-representation issue by the following 323

form: 324

U v = U v Gv
∗ + Ev (6) 325

where Ev denotes the error term of samples reconstruction. 326

At this time, we investigate to measure the dependence 327

between two views from the aspect of space reconstruction. 328

That is, we expect that reconstruction relationships among 329

samples in the one view could be equally preserved in the 330

other view on the manifold. Therefore, we additionally could 331

utilize the following cost function to measure the consensus 332

between the vth view and the wth view 333

Reg(Uv , Gw
∗ ) = ��Uv − Uv Gw

∗
���2

F
334

= tr
�
U v (I N − Gw

∗ )
�
I N − Gw

∗
�T

U v T �
. (7) 335

For convenience, we can further summarize the graph con- 336

sensus term into a unified form Reg(U v , Gw
∗ ) = tr(U v LwU v T ) 337

through (5)–(7), where Lw is just dependent on the graph Gw
∗ . 338
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In the above discussion, we provide two formulas of Lw based339

on the consistent preservation between two views. To sum340

up, we could utilize the graph consensus term Reg(Uv , Gw
∗ )341

to co-regularize the dependence among different views and342

simultaneously obtain the graph structure or embedding for343

each view.344

C. Multiview Learning Framework Based on Graph345

Consensus Term346

To fully explore the correlations and complementary infor-347

mation among multiple views, we employ the graph consensus348

term in (5)–(7) to encourage the new representations of differ-349

ent views to be close to each other. Accordingly, by combining350

graph embedding loss term in each view with graph consensus351

term among all views, the overall objective function could be352

formulated as follows:353

min{Uv∈Cv ,Gw
∗ ,1≤v≤M}

M�
v=1

F(Gv , U v )

� �� 	
Graph embedding loss

+ λR

M�
v=1

�(Uv )

� �� 	
Normalization term

354

+ λC

�
v �=w

Reg(U v , Gw
∗ )

� �� 	
Graph consensus term

(8)355

where λR > 0 and λC > 0 are two tradeoff parameters356

corresponding to the smooth regularized term and graph357

consensus term, respectively. Under the assumption that space358

structures in different views could reflect intrinsic properties359

diversely, the first term ensures that the graphs are constructed360

for homogeneous structures. The second term guarantees the361

smoothness within each view independently, and the third term362

enforces that the learned representations {U v , 1 ≤ v ≤ M}363

should learn from each other to minimize the gap between364

them. In this way, when facing multiview issues, our proposed365

framework could deal with the diversity information, smooth366

regularized terms, and complementary information among367

multiple views jointly.368

1) Optimization Procedure: With the alternating optimiza-369

tion strategy, (8) could be approximately solved. That is to370

say, we solve each view at a time while fixing other views.371

Specifically, with all views but U v fixed, we get the following372

optimization problem for the vth view:373

min
Uv∈Cv

F(Gv , U v ) + λR�(Uv )374

+ λC

M�
1≤v �=w

(Reg(Uv , Gw
∗ ) + Reg(Uw, Gv

∗)). (9)375

Note that in Reg(Uw, Gv
∗), Gv

∗ is dependent on the target376

variable Uv and (9) could not be directly solved. But if Gv
∗ is377

set to be stationary, Reg(Uw, Gv
∗) will be reduced a constant378

term on Uv . Without considering the constant terms, (9) will379

reduce to the following:380

min
Uv∈Cv

F(Gv , U v ) + λR�(Uv ) + λC

M�
1≤v �=w

Reg(Uv , Gw
∗ ) (10)381

which looks simpler to be solved. Notably, we assign the382

same importance for other views in updating Uv . After383

finely weighting other views, the performance may be further 384

improved. For this reason, we optionally utilize the weighting 385

strategy as follows: 386

min
Uv∈Cv

F(Gv , U v ) + λR�(Uv ) + λC

M�
1≤v �=w

αw
v Reg(Uv , Gw

∗ ) 387

(11) 388

where αw
v ≤ 0 denotes the importance of the wth view in 389

updating Uv , i.e.,



v �=w αw
v = 1. Usually, we can adjust the 390

importance parameter αw
v by grid search technology. Besides, 391

inspired by these works [14], [20], [52], we additionally 392

provide a self-weighting strategy to improve the efficiency of 393

the weight assignment, which can be expressed as follows: 394

αw
v = f (Reg(U v , Gw

∗ ))

v �=w f (Reg(U v , Gw

∗ ))
(12) 395

where f (·) is a scalar function to adjust the specific-view 396

weight, such as exponential function. 397

Suppose that U v could be effectively calculated by solv- 398

ing (10), this Uv could be continuously used to update 399

Gv
∗ according to the construction manner of chosen learned 400

graph method, which inspires us to compute U v and Gv
∗ 401

iteratively. The whole procedure to solve (8) is summarized 402

in Algorithm 1. 403

Algorithm 1 Optimization for GCMF

Input: The multiview data {Xv ,∀1 ≤ v ≤ M}, the
hyperparameters λR and λC , the loss function
F(·, ·), the constraint Cv , the learned graph
manner for G∗.

1 for v=1:M do
2 Construct Gv in the loss function F(·, ·).
3 Initialize U v by minimizing the loss function F(·, ·)

under the constraint Cv .
4 end
5 while not converged do
6 for v=1:M do
7 Update Gv

∗ for the vth view according to the
construction manner of the chosen learned graph
method.

8 end
9 for v=1:M do

10 Update U v for the vth view by solving (10).
11 end
12 end

Output: Learned representations {U v , 1 ≤ v ≤ M}.

2) Convergence Analysis: Because we adopt the alternating 404

optimization strategy to solve our proposed framework, it is 405

essential to analyze its convergence. 406

Theorem 1: The objective function in (8) is bounded. The 407

proposed optimization algorithm monotonically decreases the 408

loss value in each step, which makes the solution converge to 409

a local optimum. 410

Proof: In most cases of graph embedding loss function 411

in vth view, F(Gv , U v ) is positive. Thus, it is readily to 412

be satisfied that there must exist one view which can make 413
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Fmin = F(Gv , U v ) > 0 to be smallest among all views.414

Similarly, we also find that the smooth regularized term �(Uv )415

must be greater than 0. For the graph consensus terms among416

views, we could verify that tr
�
U v LwU v T �

is positive-definite417

quadratic function if Lw is a positive-definite matrix. Fortu-418

nately, this condition is usually established. Similar to the419

discussion the loss function in each view, there must exist420

two closest views which could make Cmin = tr
�
U v LwU v T �

>421

0 to be smallest among all pairwise views. And because the422

hyperparameters λR > 0 and λC > 0, it is provable that the423

objective value in (8) is greater than MFmin + M(M −1)Cmin.424

Therefore, the objective function in (8) has a lower bound.425

For each iteration of optimizing problem (8), we could426

obtain the learned representations {U v , 1 ≤ v ≤ M} by427

iterative solving (10), which are corresponding to the exact428

minimum points of (8) for all views, respectively. Under the429

condition that Gv
∗ is set to be stationary, the value of the430

objective function in (10) is nonincreasing in each iteration431

of Algorithm 1. Thus the alternating optimization procedure432

will monotonically nonincreasing the objective in (8).433

Denote the value of loss function in (8) as H, and let {Ht }T
t=1434

be a sequence generated by the iteration steps in Algorithm 1,435

where T is the length of this sequence. Based on the above436

analysis, {Ht}T
t=1 is a bounded below monotone decreasing437

sequence. According to the bounded monotone convergence438

theorem [55] that asserts the convergence of every bounded439

monotone sequence, the proposed optimization algorithm con-440

verges. Accordingly, Theorem 1 has been proven.441

D. Discussion With Other Related Methods442

In this section, we give a comprehensive explanation for the443

proposed GCMF, by discussing the differences and relations444

between GCMF and other related methods.445

Compared with the variants based on CCA, our proposed446

graph consensus term is not limited by the dimensional447

equivalent across different views. For the HSIC term in (2),448

linear kernel is usually used to implement K X and K Y .449

Even though this way is convenient to obtain the optimal450

solution, the optimization for the nonlinear case is not efficient.451

Besides, Co-reg [19] might meet the similar issue when facing452

nonlinear cases. Note that, when the graph consensus term453

focuses on the similarity among samples in other views, HSIC454

term and the disagreement term in Co-reg could be seen455

as special cases of the graph consensus term. For example,456

if Reg(U v , Gw
∗ ) = U v H Kw HU v T

, it is equivalent to the457

definition of HSIC term with linear kernel. Differently, we can458

flexibly choose the common kernel function as similarity459

measure for Kw , such as Gaussian kernel and graph structure460

within data, which is more applicable for the nonlinear case.461

Compared with those graph structure fusion (GSF)-based462

works [13], [14], [15], [16] that fuse multiple graphs into463

one common latent space shared by all views, the proposed464

GCMF might pay more attention to the complementary efforts465

between views. Besides, its variants can be scalably to intro-466

duce the common embedding in our framework based on the467

regularization term Reg(U, Gv
∗), where U denotes the common468

embedding for all views. When explicitly considering the469

complementary efforts, the regularization term Reg(U, Gv
∗) 470

should be added into (10) to update each view; otherwise, 471
M
1≤v �=w Reg(U v , Gw

∗ ) in (10) should be just substituted with 472

the regularization term Reg(U, Gv
∗). In contrast to above 473

graph-based multiview works, another classical type of graph 474

fusion-based works [8], [50], [54] aim to learn the consensus 475

graph for all views. Even though the proposed GCMF mainly 476

focuses on the embeddings for multiple views, its variants 477

can be also readily extended into such case. For example 478

with GSF [50], first, the shared embedding U is used to 479

approximate the fused affinity matrix; then, the regularization 480

term Reg(U, G∗) is equal to graph approximation term in 481

GSF; finally, the low-rank constraint is added on the consensus 482

graph G∗. In this way, we can implement the transform process 483

from GCMF to GSF. 484

By comparing the proposed GCMF with its related works, 485

we can summarize the following advantages in terms of 486

exploitation for multiview information and the flexibility of 487

GCMF. 488

1) For most of existing multiview learning frameworks, the 489

limitation of dimensional equivalent makes it not flexible 490

for the extensions of those works. Differing from those 491

methods, GCMF can flexibly formulate the dimensional- 492

ity of each view, which eliminates this limitation. More 493

importantly, GCMF can incorporate nonlinear universal 494

cases by exploiting the graph structure information based 495

on learned representations. 496

2) GCMF is a flexible and scalable multiview framework, 497

which not only can extend most single-view graph 498

embedding methods into the multiview scenario, but also 499

can maintain compatibility with existing GSF methods. 500

Furthermore, to preserve the stability of the multiview 501

framework, it co-regularizes different views through the 502

graph consensus term based on learned graphs, mean- 503

while preserving the intrinsic property of each view. 504

IV. SPECIFIC IMPLEMENT 505

In this section, we choose two graph embedding methods, 506

consisting of LE [56] and LLE [29], to provide a typical 507

implement for our proposed framework, named GCMF-LLE. 508

A. Construction Process of GCMF-LLE 509

LLE lies on the manifold structure of the samples space 510

to preserve the relationships among samples. Based on the 511

assumption that each sample and its neighbors lie on or close 512

to a locally linear patch of the manifold, then we obtain the 513

weights matrix Sv ∈ R
N×N by minimizing the following 514

reconstruction error: 515

N�
i=1

������Xv
i −

�
j∈N{i}

Sv
i j Xv

j

������

2

2

(13) 516

where N {i} denotes the neighbors of the i th sample Xv
i . 517

By solving the above equation, we could obtain graph structure 518

Sv to reflect the intrinsic properties of the samples space. 519

We expect their characterization of local geometry in the 520

original space to be equally valid for local patches on the 521
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manifold. Each original sample Xv
i is mapped to a new522

dv -dimensional coordinate. Additionally, we constrain the523

learned representations Uv
i , 1 ≤ i ≤ N to have unit covariance.524

With simple algebraic formulation, the above cost problem can525

be further transformed as follows:526

min
Uv

tr
�
Uv(I − Sv)

T
(I − Sv)UvT �

527

s.t. U vU vT = I . (14)528

Hereto, we determine that F(Uv ) and Cv are responding to529

tr(U v(I − Sv)T (I − Sv)UvT
) and Uv U vT = I N , respectively.530

LE aims at preserving the local neighborhood structure on531

the data manifold, which constructs the weight matrix that532

describes the relationships among the samples. Specifically,533

the similarity matrix G∗ is to denote the weight coefficients,534

which could choose the common kernel function as our535

similarity measure, such as linear kernel, polynomial kernel,536

and Gaussian kernel. Combining this with the graph consensus537

term in (5) between the v view and wth view, we could define538

Lw as follows:539

Lw = Dw − Gw
∗ (15)540

where Dw denotes a diagonal matrix and Dw
ii = 


j G∗w
i j .541

By rewriting the normalized matrix Lw , we could get542

Lw = I N − Dw−1/2 Gw
∗ Dw−1/2. Therefore, we can obtain the543

following graph consensus term between two views:544

Reg(Uv , Gw
∗ ) = tr

�
U v(I N − Dw−1/2 G∗ Dw−1/2)U v T �

. (16)545

According to the above construction of single-view graph546

loss function and graph consensus term between views,547

we have specified each term in objective function in (8) and548

its constraint terms. In this way, we could extend single-549

view-based LLE into multiview setting, named multiview LLE550

(GCMF-LLE). Accordingly, the whole objective function for551

GCMF-LLE can be formulated as follows:552

min O
�
U1, U2, . . . , U M

�
553

=
M�

v=1

tr
�
U v(I − Sv)

T
(I − Sv)UvT � + λR

M�
v=1

�(U v )554

+ λC

�
v �=w

tr
�
U v

�
I N − Dw−1/2 Gw

∗ Dw−1/2�Uv T �
555

s.t. Uv UvT = I, 1 ≤ v ≤ M. (17)556

Because the constraint terms normalize the scale of557

{U1, U2, . . . , U M}, the smooth regularized term �(U v) could558

be neglected in the objective function of GCMF-LLE. That is,559

the above equation could be reduced as follows:560

min O
�
U1, U2, . . . , U M

�
561

=
M�

v=1

tr
�
Uv(I − Sv)

T
(I − Sv)UvT �

562

+ λC

�
v �=w

tr
�
U v(I N − Dw−1/2 Gw

∗ Dw−1/2)Uv T �
563

s.t. U vU vT = I, 1 ≤ v ≤ M. (18)564

B. Optimization 565

Referring to the optimization procedure for GCMLF, (18) 566

could be approximately solved. When solving the vth view, 567

with all views fixed but U v , we get the following optimization 568

for the vth view: 569

min O(Uv ) = tr
�
Uv(I − Sv)

T
(I − Sv)UvT �

570

+ λC

M�
1≤v �=w

tr
�
U v(I N − Dw−1/2 Gw

∗ Dw−1/2)Uv T �
571

s.t. U v UvT = I . (19) 572

Due to the attributes of the matrix trace, the above equation 573

is equivalent to the following optimization problem: 574

min O(Uv ) = tr

⎛
⎝Uv ((I − Sv)

T
(I − Sv) 575

+ λC

M�
1≤v �=w

(I N − Dw−1/2 Gw
∗ Dw−1/2)UvT

⎞
⎠ 576

s.t. U v UvT = I . (20) 577

Under the constraint condition Uv UvT = I , the above equa- 578

tion could be efficiently solved by eigenvalue decomposition. 579

In this way, we could solve all the variables {Uv , Gv
∗, 1 ≤ v ≤ 580

M} iteratively. 581

According to the convergence analysis for our framework in 582

Section III-C, it could be easily verified that the optimization 583

procedure for GCMF-LLE will be converged within limited 584

iteration steps. We also use many experiments to verify the 585

convergence property of the proposed method. Fig. 2 shows the 586

relation between the objective values and iterations. As shown 587

in Fig. 2, we can see that with the iterations increase, the 588

objective function value of the proposed method decreases fast 589

and reaches a stable point after a few iterations, while the 590

classification accuracy increases dramatically during the first 591

small number of iterations and then reaches the stable high 592

level for these four benchmark databases. For example, for 593

the Holidays dataset, the proposed method reaches the stable 594

point in terms of classification accuracy within about fifteen 595

iterations. Both theoretical proof and experiments demonstrate 596

that the proposed method can obtain the local optimum quickly 597

and has good convergence property. 598

C. Time Complexity Analysis 599

The computational cost for GCMF-LLE mainly is composed 600

of two parts. One is the construction for the variables {Sv , i ≤ 601

v ≤ M} and the initialization for the variables and {Uv , i ≤ 602

v ≤ M}, which solves Sv and U v according to (13) and (14). 603

The other is to iteratively update K v and Uv , which needs to 604

perform the computation of similarity matrix and eigenvalue 605

decomposition in each iteration, respectively. Therefore, the 606

time complexity for GCMF-LLE is about O(T × M × N3), 607

where T is the iteration times of the alternating optimization 608

procedure. Note that, based on the convergence of the opti- 609

mization procedure of GCMF-LLE, the iteration times T will 610

be a limited number. Therefore, its time complexity is linear 611
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Fig. 2. Convergence validations on four datasets. (a) Yale dataset. (b) Holi-
days dataset. (c) ORL dataset. (d) Corel-1K dataset.

with respect to LLE, which can imply that the optimization612

for GCML is efficient.613

D. Discussion614

LLE and LE are two graph embedding methods based on615

self-representation and geometric structure styles, respectively,616

in which LLE is used to construct the graph learning loss617

term and LE is used to regularize the dependence between618

two views in (8). Note that, LLE is based on manifold619

space reconstruction, which aims to preserve reconstruction620

relationships among samples. Therefore, when LE is utilized621

to construct the graph learning loss term, we also consider that622

LLE is used to construct the graph consensus term between623

two views by (7). To facilitate the solution, we choose the624

former to specify the graph learning loss term in (8) in this625

article.626

V. EXPERIMENTS627

In this section, we introduce the details of several exper-628

iments on document classification, face recognition, and629

image retrieval, to verify the effectiveness of our proposed630

framework.631

A. Datasets and Compared Methods632

In our experiments, six datasets are used to validate the633

superior performance of our framework, including document634

datasets (3Source1 and Cora2), face datasets(ORL3 and Yale4),635

and image datasets(Corel-1K5 and Holidays6). Two document636

datasets are two benchmark multiview datasets. For the face637

1http://mlg.ucd.ie/datasets/3sources.html
2http://lig-membres.imag.fr/grimal/data.html
3http://www.U.K..research.att.com/facedatabase.html
4http://cvc.yale.edu/projects/yalefaces/yalefaces.html
5https://sites.google.com/site/dctresearch/Home/content-based-image-

retrieval
6http://lear.inrialpes.fr/jegou/data.php

and image datasets, we utilize different descriptors to extract 638

their corresponding multiview features, in which some samples 639

in these datasets are shown in Fig. 3. The detailed information 640

of these datasets is summarized as follows. 641

1) 3Source consists of three well-known news organiza- 642

tions: BBC, Reuters, and Guardian, where each news is 643

manually annotated with one of six labels. Because each 644

news source can be used as one view, we choose these 645

news sources as a multiview benchmark dataset. 646

2) Cora contains 2708 scientific publications of seven 647

categories, where each publication document could be 648

described by content and citation. Thus, Cora could be 649

considered as a two-view benchmark dataset. 650

3) ORL is collected from 40 distinct subjects, where ten 651

different images are gathered for each subject. For each 652

person, the images are taken at different times, varying 653

the lighting, facial expressions, and facial details. 654

4) Yale is composed of 165 faces from 15 peoples, which 655

has been widely used in face recognition. Each person 656

has eleven images, with different facial expressions and 657

facial details. 658

5) Corel-1K manually collects 1000 images corresponding 659

to ten categories, such as human beings, buildings, 660

landscapes, buses, dragons, elephants, horses, flowers, 661

mountains, and foods. And there are one hundred images 662

in each category. 663

6) Holidays consists of 1491 images corresponding to 664

500 categories, which are mainly captured for sceneries. 665

Even though text and images adopted in experiments don’t 666

explicitly contains the graph structure information, there exists 667

the relationship among samples in the above datasets, such 668

as similarity and reconstruction relationships. Based on the 669

similarity or reconstruction relationship among samples, the 670

proposed GCMF can build the graph-structure data for all 671

views to exploit their intrinsic information among multiple 672

views, where each sample (text or image) can be seen as one 673

node in the graph. 674

To demonstrate the superior performance of our framework, 675

we compare GCMF-LLE with the following methods, where 676

the first two are single-view methods with the most informative 677

view, and the others are multiview learning methods. 678

1) BLE is Laplacian eigenmaps (LE) [56] with the most 679

informative view, i.e., one that achieves the best perfor- 680

mance with LE. 681

2) BLLE is LLE [29] with the most informative view, 682

similar to BLE. 683

3) GFSC [53] is a multiview spectral embedding based on 684

multigraph fusion to approximate the original graph of 685

individual view. 686

4) GMC [8] is a multiview graph-based method to learn 687

the common graph shared by all views. 688

5) GMA [21] is a general multiview learning framework, 689

solving the joint and relaxed problem of the form of 690

QCQP. 691

6) MDcR [39] is a multiview dimensionality reduction 692

method, which explores the correlations of different 693

views based on HSIC term. 694
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Fig. 3. Examples images in datasets. (a) Some examples in Yale dataset. (b) Some examples in Holidays dataset. (c) Some examples in ORL dataset.
(d) Some examples in Corel-1K dataset.

7) AMGL [14] is an auto-weighted multiple graph learning695

method, which could allocate ideal weight for each view696

automatically.697

B. Document Classification698

In this section, we evaluate the experimental results of the699

document classification tasks on 3Source and Cora datasets.700

For these two datasets, we randomly select 50% of the samples701

as training samples and the remaining 50% of the dataset as702

testing samples every time. All the methods are conducted to703

project all samples to the same dimensionality. Specifically,704

the dimensions of the embedding obtained by all methods705

all maintain 20 and 30 dimensions. We adopt 1NN as the706

classifier to classify the testing ones. After conducting this707

experiment 30 times with different random training samples708

and testing samples, we calculate the mean classification709

accuracy (MEAN) and max classification accuracy (MAX)710

on 3Source and Cora datasets as the evaluation index for all711

methods. Then, we can summarize the evaluation indexes of712

MEAN and MAX results in Tables II and III.713

Through the experimental results of Tables II and III, it is714

clear that the proposed GCMF-LLE is significantly superior to715

its counterparts in most situations. Besides, the performance of716

the GCMF-LLE is more stable than other compared methods.717

For example, GMC can obtain promising results on 3Source718

TABLE II

CLASSIFICATION ACCURACY ON 3SOURCE DATASET

TABLE III

CLASSIFICATION ACCURACY ON CORA DATASET

dataset while the performance degrades sharply on the Cora 719

dataset; in contrast to GMC, GMA can obtain the superior 720

performance on the Cora dataset but get the poor results on 721

the 3Source dataset. 722
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Fig. 4. Face recognition accuracy on Yale dataset.

Fig. 5. Face recognition accuracy on ORL dataset.

C. Face Recognition723

In this section, we evaluate the experimental results of724

the face recognition tasks on Yale and ORL datasets. For725

these two datasets, we first extract their multiview features by726

EDH [57], LBP [58], and Gist [1]. Then, all the methods are727

conducted to project all samples to the same dimensionality728

and the 1NN classifier is adopted to calculate the recognition729

results, where the dimension of the embedding all maintains730

30 dimensions. Note that we randomly select 50% of the731

samples as training samples and the remaining 50% of the732

samples as testing samples every time and run all methods733

30 times with different random training samples. Because734

the task of face recognition mainly cares about recognition735

accuracy, we choose recognition accuracy as the evaluation736

index in this part. The boxplot figures of accuracy values737

of all methods on Yale and ORL datasets are shown in738

Figs. 4 and 5.739

Through the experiment results of the above two experi-740

ments in Figs. 4 and 5, the multiple view performances are741

usually better than the independent view. This demonstrates742

that multiple views can improve the performance of face743

recognition. Among these multiview methods, we can find that744

TABLE IV

IMAGE RETRIEVAL ACCURACY ON HOLIDAYS DATASET

GCMF-LLE outperforms its comparing methods in most situa- 745

tions, which shows the superiority of the proposed framework. 746

D. Image Retrieval 747

In this section, we conduct two experiments on Holidays and 748

Corel-1K datasets for image retrieval. For these two datasets, 749

we both employ three image descriptors of MSD [59], Gist [1], 750

and HOC [60] to extract multiview features for all images. All 751

the methods are conducted to project all samples to the same 752

dimensionality. In this part, the dimensions of the embedding 753

obtained by all methods maintain 30 dimensions. Besides, 754

l1 distance is utilized to measure similarities between samples. 755

At the aspect of the validation index, we choose several 756

common indexes, including average precision rate (Precision), 757

average recall rate (Recall), mean average precision (MAP), 758

and F1-Measure, to validate the performances for image 759

retrieval. Actually, high Precision and Recall are required 760

and F1-Measure is put forward as the overall performance 761

measurement. Then, we conducted this experiment on these 762

two datasets repeatedly for 20 times. For Holidays dataset, 763

we summarize these experiment results, including Precision, 764

Recall, MAP, and F1-Measure, on top 2 retrieval results in 765

Table IV. For Corel-1K dataset, we randomly select ten images 766

as query ones for each category. Afterward, the relation curves 767

on validation indexes are drawn in Fig. 6. 768

Through these experimental results in Table IV and Fig. 6, 769

it can be readily found that our proposed GCMF-LLE achieves 770

better performance than the other compared methods in 771

most situations in the field of image retrieval. The proposed 772

GCMF-LLE could integrate compatible and complementary 773

information from multiple views and obtain a better embed- 774

ding from these views. Therefore, the results in Table IV 775

and Fig. 6 could show that our framework can achieve good 776

performance in the field of face recognition. Note that the 777

performance of BLE is bad because of its unreasonable way 778

to deal with multiview features. 779

E. Sensitivity Analysis 780

To fully validate the effectiveness of GCMF-LLE, this 781

subsection mainly analyzes the influence on the performance 782

of the parameter λC introduced in GCMF-LLE. As is shown 783

in Fig. 7, which summarizes the classify accuracy values of 784

3Source, Cora, ORL, and Yale datasets, where the dimension- 785

ality of low-dimensional embedding is 30. It is easy to find 786

that the oscillation of accuracy becomes very stable, which 787
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Fig. 6. Curves of precision, recall, PR, and F1-Measure on Corel-1K dataset. (a) Precision. (b) Recall. (c) PR-Curve. (d) F1-Measure.

Fig. 7. Sensitivity analysis on four datasets. (a) 3Source dataset. (b) Cora
dataset. (c) Yale dataset. (d) ORL dataset.

indicates that the performance is not so sensitive to those788

hyperparameters. More importantly, there exists a wide range789

for each hyper-parameter in which relatively stable and good790

results can be readily obtained.791

F. Stability Analysis 792

To validate the model stability of GCMF-LLE, we conduct 793

the cross-validation experiments under different settings. To be 794

specific, we run the twofold, threefold, fivefold, and tenfold 795

cross-validation experiments on the 3Source, Cora, ORL, and 796

Yale datasets, respectively. For the example of fivefold cross- 797

validation, onefold and the other fourfold are used for testing 798

data and training data, respectively, thus the validation process 799

is repeated five times, and the average accuracy over these 800

five runs is used as the final result. And the dimensionality 801

of low-dimensional embedding is 30. We summarize the 802

average accuracy values of different cross-validation settings 803

on the four datasets in Table V. Through the results in 804

Table V, we can find that the variation of the performance 805

of cross-validation under different settings is relatively stable. 806

That is, the proposed GCML is a stable multiview learning 807

framework. 808

G. Visualization of GCMF-LLE 809

To visualize the sample distribution learned by GCMF- 810

LLE, we first adopt t-SNE [61] to project original data and 811

learned features into the 2-D subspace, and then visualize 812

their distributions. This experiment is conducted on the Cora 813
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TABLE V

CROSS-VALIDATION RESULTS (%) ON FOUR DATASETS

Fig. 8. Visualization of GCMF-LLE on Cora dataset. (a) Original data.
(b) GCMF-LLE.

dataset, and we visualize the learned features in the first view,814

shown in Fig. 8. Obviously, the distributions of original data815

are disordered. After GCMF-LLE is conducted, the samples816

can be readily separated into several clusters, which can817

validate the effectiveness of GCMF-LLE.818

H. Discussion819

For the experiment results in Tables II and III on text820

classification, we can find that GCMF-LLE outperforms other821

comparing methods in most situations. Similarly, our proposed822

GCMF-LLE also obtain promising performance in face recog-823

nition tasks through the evaluations in Figs. 4 and 5. As shown824

in Table IV and Fig. 6, our method could also be utilized to825

execute the image retrieval task. From the above evaluations,826

it is readily seen that the representations obtained by our827

method could be more effective and suitable for multiview828

features.829

According to the above experimental results, we can drive830

the following findings. Compared with BLLE and BLE,831

GCMF-LLE could achieve significantly better performance832

by integrating complementary information among different833

views meanwhile preserving its intrinsic characteristic in each834

view. Compared with other multiview methods, GCMF-LLE835

can obtain more robust and efficient performance due to836

flexibility and stability of GCMF. Note that the experimen-837

tal results of our proposed GCMF-LLE on six datasets are838

without fine-tuning for the views’ weights, and usage of fine-839

tuning (self-weighting or grid searching strategy) might further840

improve its performance. Besides, we empirically find that841

GCMF-LLE could converge within limited iterations in most842

experiments.843

Notably, graph convolution network (GCN) [62], [63] has844

gained extensive attention from researchers, which is also con-845

sidered as graph-based work. Different from the graph-based846

work investigated in this article, GCN is built on the explicit847

graph structure and label information. GCMF-LLE is an848

unsupervised multiview method, and those datasets in the849

experiments cannot provide explicit graphs besides Cora. Even 850

though GCN is not suitable to be utilized as a comparing 851

method in this article, we aim to combine our proposed GCMF 852

with GCN to solve the graph learning problems under the 853

multiview scenario. 854

VI. CONCLUSION 855

In this article, we propose a unified and scalable multiview 856

learning framework, named GCMF, which aims at leveraging 857

most existing graph embedding works into one formula via 858

introducing the graph consensus term. GCMF encourages all 859

views to learn with each other according to the complemen- 860

tarity among views and explores the learned graph structure 861

in each view independently to preserve the diversity property 862

among all views. Based on the sufficient theoretical analysis, 863

we show that GCMF is a more robust and flexible multiview 864

learning framework than those existing multiview methods. 865

Correspondingly, an algorithm based on alternating direction 866

strategy is proposed to solve GCMF. To further facilitate the 867

related research and the understanding of GCMF, we pro- 868

vide one typical implementation of the multiview extension 869

for LLE, called GCMF-LLE. Extensive experimental results 870

demonstrate that the proposed GCMF-LLE can effectively 871

explore the diversity information and underlying complemen- 872

tary information of the given multiview data, and outperforms 873

its compared methods. With the rapid development of graph 874

neural networks [64], [65], [66], how to combine our proposed 875

GCMF with GCN to solve the multiview problems with graph 876

information is very meaningful yet full of challenges, and we 877

will consider it in our future work. 878

ACKNOWLEDGMENT 879

The authors thank the anonymous reviewers for their 880

insightful comments and suggestions to significantly improve 881

the quality of this article. 882

REFERENCES 883

[1] M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid, 884

“Evaluation of GIST descriptors for web-scale image search,” in Proc. 885

ACM Int. Conf. Image Video Retr. (CIVR), 2009, pp. 1–8. 886

[2] G. Bisson and C. Grimal, “Co-clustering of multi-view datasets: 887

A parallelizable approach,” in Proc. IEEE 12th Int. Conf. Data Mining, 888

Dec. 2012, pp. 828–833. 889

[3] G. Chao, S. Sun, and J. Bi, “A survey on multiview clustering,” IEEE 890

Trans. Artif. Intell., vol. 2, no. 2, pp. 146–168, Apr. 2021. 891

[4] Y. Li, M. Yang, and Z. Zhang, “A survey of multi-view represen- 892

tation learning,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 10, 893

pp. 1863–1883, Oct. 2019. 894

[5] M. Kan, S. Shan, and X. Chen, “Multi-view deep network for cross- 895

view classification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 896

(CVPR), Jun. 2016, pp. 4847–4855. 897

[6] C. Zhang, J. Cheng, and Q. Tian, “Multi-view image classification with 898

visual, semantic and view consistency,” IEEE Trans. Image Process., 899

vol. 29, pp. 617–627, 2019. 900

[7] Q. Yin, S. Wu, and L. Wang, “Multiview clustering via unified and 901

view-specific embeddings learning,” IEEE Trans. Neural Netw. Learn. 902

Syst., vol. 29, no. 11, pp. 5541–5553, Nov. 2018. 903

[8] H. Wang, Y. Yang, and B. Liu, “GMC: Graph-based multi-view clus- 904

tering,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 6, pp. 1116–1129, 905

May 2019. 906

[9] L. Feng, X. Meng, and H. Wang, “Multi-view locality low-rank embed- 907

ding for dimension reduction,” Knowl.-Based Syst., vol. 191, Mar. 2020, 908

Art. no. 105172. 909

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 30,2023 at 02:45:04 UTC from IEEE Xplore.  Restrictions apply. 



MENG et al.: UNIFIED FRAMEWORK BASED ON GRAPH CONSENSUS TERM FOR MULTIVIEW LEARNING 13

[10] X. Meng, L. Feng, and H. Wang, “Multi-view low-rank preserving910

embedding: A novel method for multi-view representation,” Eng. Appl.911

Artif. Intell., vol. 99, Mar. 2021, Art. no. 104140.912

[11] H. Wang, J. Peng, D. Chen, G. Jiang, T. Zhao, and X. Fu, “Attribute-913

guided feature learning network for vehicle reidentification,” IEEE914

Multimedia, vol. 27, no. 4, pp. 112–121, Oct. 2020.915

[12] H. Wang, J. Peng, Y. Zhao, and X. Fu, “Multi-path deep CNNs for fine-916

grained car recognition,” IEEE Trans. Veh. Technol., vol. 69, no. 10,917

pp. 10484–10493, Oct. 2020.918

[13] T. Xia, D. Tao, T. Mei, and Y. Zhang, “Multiview spectral embedding,”919

IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 6,920

pp. 1438–1446, Dec. 2010.921

[14] F. Nie, G. Cai, J. Li, and X. Li, “Auto-weighted multi-view learning for922

image clustering and semi-supervised classification,” IEEE Trans. Image923

Process., vol. 27, no. 3, pp. 1501–1511, Mar. 2018.924

[15] S. Huang, Z. Kang, and Z. Xu, “Self-weighted multi-view clustering925

with soft capped norm,” Knowl.-Based Syst., vol. 158, no. 15, pp. 1–8,926

Oct. 2018.927

[16] L. Tian, F. Nie, and X. Li, “A unified weight learning paradigm for multi-928

view learning,” in Proc. 22nd Int. Conf. Artif. Intell. Statist., vol. 89,929

2019, pp. 2790–2800.930

[17] W. Wang and Z. H. Zhou, “A new analysis of co-training,” in Proc. Int.931

Conf. Mach. Learn., 2010, pp. 1–8.932

[18] A. Kumar and H. Daumé, “A co-training approach for multi-view933

spectral clustering,” in Proc. 28th Int. Conf. Mach. Learn., 2011,934

pp. 393–400.935

[19] A. Kumar, P. Rai, and H. Daume, “Co-regularized multi-view spec-936

tral clustering,” in Proc. Adv. Neural Inf. Process. Syst., 2011,937

pp. 1413–1421.938

[20] H. Wang et al., “Kernelized multiview subspace analysis by self-939

weighted learning,” IEEE Trans. Multimedia, vol. 23, pp. 3828–3840,940

2021.941

[21] A. Sharma, A. Kumar, H. Daume, and D. W. Jacobs, “Generalized942

multiview analysis: A discriminative latent space,” in Proc. IEEE Conf.943

Comput. Vis. Pattern Recognit., Jun. 2012, pp. 2160–2167.944

[22] G. Cao, A. Iosifidis, K. Chen, and M. Gabbouj, “Generalized multi-945

view embedding for visual recognition and cross-modal retrieval,” IEEE946

Trans. Cybern., vol. 48, no. 9, pp. 2542–2555, Sep. 2018.947

[23] X. Meng, H. Wang, and L. Feng, “The similarity-consensus regular-948

ized multi-view learning for dimension reduction,” Knowl.-Based Syst.,949

vol. 199, Jul. 2020, Art. no. 105835.950

[24] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph951

embedding and extensions: A general framework for dimensionality952

reduction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1,953

pp. 40–51, Jan. 2007.954

[25] P. N. Belhumeur, J. P. Hespanha, and D. Kriegman, “Eigenfaces vs.955

Fisherfaces: Recognition using class specific linear projection,” IEEE956

Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul. 1997.957

[26] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning958

for large margin nearest neighbor classification,” in Proc. Adv. Neural959

Inf. Process. Syst., 2006, pp. 1473–1480.960

[27] L. Torresani and K.-C. Lee, “Large margin component analysis,” in Proc.961

Adv. Neural Inf. Process. Syst., 2007, pp. 1385–1392.962

[28] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers,963

“Fisher discriminant analysis with kernels,” in Proc. Neural Netw. Signal964

Process., IEEE Signal Process. Soc. Workshop, Aug. 1999, pp. 41–48.965

[29] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by966

locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,967

Dec. 2000.968

[30] D. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation969

analysis: An overview with application to learning methods,” Neural970

Comput., vol. 16, no. 12, pp. 2639–2664, Dec. 2004.971

[31] F. R. Bach and M. I. Jordan, “Kernel independent component analysis,”972

J. Mach. Learn. Res., vol. 3, pp. 1–48, Jan. 2002.973

[32] J. Rupnik and J. Shawe-Taylor, “Multi-view canonical correlation analy-974

sis,” in Proc. Conf. Data Mining Data Warehouses, 2010, pp. 1–4.975

[33] M. Kan, S. Shan, H. Zhang, S. Lao, and X. Chen, “Multi-view976

discriminant analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38,977

no. 1, pp. 188–194, Jan. 2016.978

[34] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:979

A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,980

vol. 35, no. 8, pp. 1798–1828, Aug. 2013.981

[35] G. Andrew, R. Arora, J. Bilmes, and K. Livescu, “Deep canonical corre-982

lation analysis,” in Proc. Int. Conf. Mach. Learn., 2013, pp. 1247–1255.983

[36] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring 984

statistical dependence with Hilbert–Schmidt norms,” in Proc. Int. Conf. 985

Algorithmic Learn. Theory. Berlin, Germany: Springer, 2005, pp. 63–77. 986

[37] D. Niu, J. G. Dy, and A. M. I. Jordan, “Iterative discovery of multiple 987

AlternativeClustering views,” IEEE Trans. Pattern Anal. Mach. Intell., 988

vol. 36, no. 7, pp. 1340–1353, Jul. 2014. 989

[38] X. Cao, C. Zhang, H. Fu, S. Liu, and H. Zhang, “Diversity-induced 990

multi-view subspace clustering,” in Proc. IEEE Conf. Comput. Vis. 991

Pattern Recognit. (CVPR), Jun. 2015, pp. 586–594. 992

[39] C. Zhang, H. Fu, Q. Hu, P. Zhu, and X. Cao, “Flexible multi-view 993

dimensionality co-reduction,” IEEE Trans. Image Process., vol. 26, 994

no. 2, pp. 648–659, Feb. 2017. 995

[40] C. Zhang et al., “Generalized latent multi-view subspace clustering,” 996

IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 1, pp. 86–99, 997

Jan. 2020. 998

[41] T. Zhou, C. Zhang, C. Gong, H. Bhaskar, and J. Yang, “Multiview latent 999

space learning with feature redundancy minimization,” IEEE Trans. 1000

Cybern., vol. 50, no. 4, pp. 1655–1668, Apr. 2020. 1001

[42] J. Li, M. Li, G. Lu, B. Zhang, H. Yin, and D. Zhang, “Similarity and 1002

diversity induced paired projection for cross-modal retrieval,” Inf. Sci., 1003

vol. 539, pp. 215–228, Oct. 2020. 1004

[43] H. Wang, G. Jiang, J. Peng, and X. Fu, “MSAV: An unified framework 1005

for multi-view subspace analysis with view consistence,” in Proc. Int. 1006

Conf. Multimedia Retr., Aug. 2021, pp. 653–659. 1007

[44] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery 1008

of subspace structures by low-rank representation,” IEEE Trans. Pattern 1009

Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013. 1010

[45] K. Tang, R. Liu, Z. Su, and J. Zhang, “Structure-constrained low-rank 1011

representation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 12, 1012

pp. 2167–2179, Dec. 2014. 1013

[46] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, 1014

theory, and applications,” IEEE Trans. Pattern Anal. Mach. Intell., 1015

vol. 35, no. 11, pp. 2765–2781, Mar. 2013. 1016

[47] J. Huang, F. Nie, and H. Huang, “A new simplex sparse learning model 1017

to measure data similarity for clustering,” in Proc. Int. Conf. Artif. Intell., 1018

2015, pp. 1–7. 1019

[48] G. Ma et al., “Multi-view clustering with graph embedding for connec- 1020

tome analysis,” in Proc. ACM Conf. Inf. Knowl. Manage., Nov. 2017, 1021

pp. 127–136. 1022

[49] Y. Gu, J. Chanussot, X. Jia, and J. A. Benediktsson, “Multiple Kernel 1023

learning for hyperspectral image classification: A review,” IEEE Trans. 1024

Geosci. Remote Sens., vol. 55, no. 11, pp. 6547–6565, Nov. 2017. 1025

[50] K. Zhan, C. Niu, C. Chen, F. Nie, C. Zhang, and Y. Yang, “Graph 1026

structure fusion for multiview clustering,” IEEE Trans. Know. Data Eng., 1027

vol. 31, no. 10, pp. 1984–1993, Oct. 2019. 1028

[51] H. Wang, Y. Yang, B. Liu, and H. Fujita, “A study of graph-based system 1029

for multi-view clustering,” Knowl.-Based Syst., vol. 163, pp. 1009–1019, 1030

Jan. 2019. 1031

[52] R. Wang, F. Nie, Z. Wang, H. Hu, and X. Li, “Parameter-free weighted 1032

multi-view projected clustering with structured graph learning,” IEEE 1033

Trans. Knowl. Data Eng., vol. 32, no. 10, pp. 2014–2025, Oct. 2020. 1034

[53] Z. Kang et al., “Multi-graph fusion for multi-view spectral clustering,” 1035

Knowl.-Based Syst., vol. 189, Feb. 2020, Art. no. 105102. 1036

[54] B.-Y. Liu, L. Huang, C.-D. Wang, J.-H. Lai, and P. S. Yu, “Multiview 1037

clustering via proximity learning in latent representation space,” IEEE 1038

Trans. Neural Netw. Learn. Syst., early access, Aug. 25, 2021, doi: 1039

10.1109/TNNLS.2021.3104846. 1040

[55] W. Rudin et al., Principles of Mathematical Analysis, vol. 3. New York, 1041

NY, USA: McGraw-Hill, 1964. 1042

[56] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality 1043

reduction and data representation,” Neural Comput., vol. 15, no. 6, 1044

pp. 1373–1396, 2003. 1045

[57] X. Gao, B. Xiao, D. Tao, and X. Li, “Image categorization: Graph edit 1046

direction histogram,” Pattern Recognit., vol. 41, no. 10, pp. 3179–3191, 1047

Oct. 2008. 1048

[58] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale 1049

and rotation invariant texture classification with local binary patterns,” 1050

IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, 1051

Jul. 2002. 1052

[59] G.-H. Liu, Z.-Y. Li, L. Zhang, and Y. Xu, “Image retrieval based 1053

on micro-structure descriptor,” Pattern Recognit., vol. 44, no. 9, 1054

pp. 2123–2133, 2011. 1055

[60] L. Yu, L. Feng, C. Chen, T. Qiu, L. Li, and J. Wu, “A novel multi-feature 1056

representation of images for heterogeneous IoTs,” IEEE Access, vol. 4, 1057

pp. 6204–6215, 2016. 1058

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 30,2023 at 02:45:04 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2021.3104846


14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[61] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”1059

J. Mach. Learn. Res., vol. 9, no. 11, pp. 2579–2605, 2008.1060

[62] T. N. Kipf and M. Welling, “Semi-supervised classification with graph1061

convolutional networks,” 2016, arXiv:1609.02907.1062

[63] Y. Zhu, W. Xu, J. Zhang, Q. Liu, S. Wu, and L. Wang, “Deep1063

graph structure learning for robust representations: A survey,” 2021,1064

arXiv:2103.03036.1065

[64] Q. Cui, S. Wu, Q. Liu, W. Zhong, and L. Wang, “MV-RNN: A multi-1066

view recurrent neural network for sequential recommendation,” IEEE1067

Trans. Knowl. Data Eng., vol. 32, no. 2, pp. 317–331, Feb. 2020.1068

[65] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu,1069

“A comprehensive survey on graph neural networks,” IEEE Trans.1070

Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.1071

[66] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Deep graph1072

contrastive representation learning,” in Proc. ICML Workshop Graph1073

Represent. Learn. Beyond, Jun. 2020, pp. 1–17.1074

Xiangzhu Meng received the B.S. degree from1075

Anhui University, Hefei, China, in 2015, and the1076

Ph.D. degree in computer science and technology1077

from the Dalian University of Technology, Dalian,1078

China, in 2021.1079

He is currently a Post-Doctoral Researcher with1080

the Center for Research on Intelligent Perception1081

and Computing, Institute of Automation, Chinese1082

Academy of Sciences, Beijing, China. He regularly1083

publishes articles in prestigious journals, includ-1084

ing Knowledge-Based System (KBS), Engineering1085

Applications of Artificial Intelligence (EAAI), and Neurocomputing. His1086

research interests include multiview learning and deep learning.1087

Lin Feng received the B.S. and M.S. degrees in1088

internal combustion engine and the Ph.D. degree1089

in mechanical design and theory from the Dalian1090

University of Technology, Dalian, China, in 1992,1091

1995, and 2004, respectively.1092

He is currently a Professor and a Doctoral1093

Supervisor with the School of Innovation Experi-1094

ment, Dalian University of Technology. His research1095

interests include intelligent image processing, data1096

mining, and embedded systems.1097

Chonghui Guo received the B.S. degree in mathe- 1098

matics from Liaoning University, Shenyang, China, 1099

in 1995, and the M.S. degree in operational research 1100

and control theory and the Ph.D. degree with the 1101

Institute of Systems Engineering, Dalian University 1102

of Technology, Dalian, China, in 1999 and 2002, 1103

respectively. 1104

He was a Post-Doctoral Research Fellow with the 1105

Department of Computer Science, Tsinghua Uni- 1106

versity, Beijing, China. He is currently a Professor 1107

with the Institute of Systems Engineering, Dalian 1108

University of Technology. His research interests include data mining and 1109

knowledge discovery. 1110

Huibing Wang received the Ph.D. degree from 1111

the School of Computer Science and Technology, 1112

Dalian University of Technology, Dalian, China, 1113

in 2018. 1114

From 2016 to 2017, he was a Visiting Scholar 1115

with the University of Adelaide, Adelaide, Australia. 1116

He is currently an Associate Professor with Dalian 1117

Maritime University, Dalian. He has authored and 1118

coauthored more than 50 papers in some famous 1119

journals or conferences, including the International 1120

Joint Conference on Artificial Intelligence (IJCAI), 1121

the IEEE TRANSACTIONS ON MULTIMEDIA (TMM), the IEEE TRANS- 1122

ACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (TITS), the IEEE 1123

TRANSACTIONS ON VEHICULAR TECHNOLOGY (TVT), the IEEE TRANS- 1124

ACTIONS ON SYSTEMS, MAN, AND CYBERNETICS (TSMC), the IEEE 1125

MULTIMEDIA (MM), the European Conference on Computer Vision (ECCV), 1126

the International Conference on Multimedia Retrieval (ICMR), and the Inter- 1127

national Conference on Multimedia and Expo (ICME). His research interests 1128

include computer vision and machine learning. 1129

Dr. Wang serves as a Reviewer for the IEEE TRANSACTIONS ON 1130

KNOWLEDGE AND DATA ENGINEERING (TKDE), the ACM Transactions on 1131

Information Systems (ACM TOIS), the IEEE TRANSACTIONS ON NEURAL 1132

NETWORKS AND LEARNING SYSTEMS (TNNLS), the IEEE TRANSAC- 1133

TIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS (TCDS), the ACM 1134

Transactions on Multimedia Computing, Communications, and Applications 1135

(ACM TOMM), and Information Fusion. 1136

Shu Wu (Senior Member, IEEE) received the B.S. 1137

degree from Hunan University, Changsha, China, 1138

in 2004, the M.S. degree from Xiamen University, 1139

Xiamen, China, in 2007, and the Ph.D. degree from 1140

the Department of Computer Science, University of 1141

Sherbrooke, Sherbrooke, QC, Canada, in 2012, all 1142

in computer science. 1143

He is currently an Associate Professor with the 1144

Center for Research on Intelligent Perception and 1145

Computing (CRIPAC), National Laboratory of Pat- 1146

tern Recognition (NLPR), Institute of Automation, 1147

Chinese Academy of Sciences (CASIA), Beijing, China. He has published 1148

more than 70 papers in the areas of data mining and information retrieval in 1149

international journals and conferences, such as the IEEE TRANSACTIONS ON 1150

KNOWLEDGE AND DATA ENGINEERING (TKDE), the IEEE TRANSACTIONS 1151

ON HUMAN-MACHINE SYSTEMS (THMS), the Association for the Advance- 1152

ment of Artificial Intelligence (AAAI), the International Conference on Data 1153

Mining (ICDM), the ACM SIGIR Conference on Research and Development 1154

in Information Retrieval (SIGIR), and the Conference on Information and 1155

Knowledge Management (CIKM). His research interests include data mining 1156

and information retrieval. 1157

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 30,2023 at 02:45:04 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


