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ABSTRACT 
Temporal Knowledge graph (TKG) reasoning aims to predict miss-
ing facts based on historical TKG data. Most of the existing methods 
are incapable of explicitly modeling the long-term time dependen-
cies from history and neglect the adaptive integration of the long-
and short-term information. To tackle these problems, we propose a 
novel method that utilizes a designed Hierarchical Relational Graph 
Neural Network to learn the Long- and Short-term representations 
for TKG reasoning, namely HGLS. Specifcally, to explicitly asso-
ciate entities in diferent timestamps, we frst transform the TKG 
into a global graph. Based on the built graph, we design a Hierar-
chical Relational Graph Neural Network that executes in two levels: 
The sub-graph level is to capture the semantic dependencies within 
concurrent facts of each KG. And the global-graph level aims to 
model the temporal dependencies between entities. Furthermore, 
we design a module to extract the long- and short-term informa-
tion from the output of these two levels. Finally, the long- and 
short-term representations are fused into a unifed one by Gating 
Integration for entity prediction. Extensive experiments on four 
datasets demonstrate the efectiveness of HGLS. 
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1 INTRODUCTION 
Temporal Knowledge Graph (TKG) is a type of dynamic multi-
relational graph data used to record evolutionary events and knowl-
edge in the real world. Most of TKG data is automatically identifed 
and extracted from a variety of international news articles, such as 
ICEWS [1] and GDELT [15] data. Each fact in a TKG is represented 
by a quadruple (�, �, �, �), such as (Obama, run for, president, 2012). 
Reasoning over TKG has gained much attention in recent years 
due to its great practical value in event prediction [4], question 
answering [20], and other areas. 

Reasoning over TKG primarily has two settings: interpolation 
and extrapolation [13]. Given a TKG with timestamps from �0 to �� , 
interpolation [7, 8, 31, 33, 35] mainly aims at inferring missing facts 
that occur at time � , where �0 < � < �� . Oppositely, extrapolation 
[9, 11, 13, 17, 26, 27, 41] attempts to predict facts that occur at time 
t with � > �� . In this paper, we mainly focus on predicting facts in 
future timestamps (� .� ., extrapolation setting). 
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Figure 1: An example of reasoning over TKG. We display 
three KGs at diferent timestamps. Each edge indicates the 
interaction between two entities. 

For accurately inferring a future fact, it is common to consider 
the long-ago history related to the fact and recent events because 
they carry important long- and short-term time dependencies 
for prediction. As shown in Figure 1, we illustrate an example 
of reasoning over TKG. The goal is to predict who will govern 
Afghanistan (Afgh) in September 2021. From the long-term per-
spective, the fact occurred in January 2001 demonstrates that USA 
started a war in Afgh. Though 2001 is long ago, what happened in 
2001 signifcantly infuences the situation of Afgh in 2021. From 
the short-term perspective, the recent facts that occurred in Au-
gust 2021, such as (Russia, Approve, Taliban) and (Taliban, Surround, 
Afgh), obviously afect the situation of Afgh in September 2021. 

Some preceding extrapolation TKG reasoning models such as 
Know-Evolve [26], model all the historical facts as a temporal point 
process. While some recent attempts, such as RE-NET [13] and 
RE-GCN [17], incorporate the Graph Neural Network (GNN) into 
sequence models to capture structural and temporal dependen-
cies between entities. Moreover, xERTE [9] and TITer [24] design 
explainable models based on subgraph search and reinforcement 
learning, respectively. Although these models achieve promising re-
sults in TKG reasoning, there are still some drawbacks in modeling 
long- and short-term time dependencies. 

Firstly, existing methods do not explicitly leverage long-term 
time dependencies. On the one hand, they are unable to explicitly 
model the long-term time dependencies of the same entities occur-
ring at diferent timestamps. Most of them rely on recurrent se-
quence models to capture temporal dependencies in history, which 
encode long-term history sequence implicitly and thus easily re-
sult in the loss of crucial long-term information [29], such as the 
important implication of Afgh in 2001 for its state in 2021. On the 
other hand, they ignore the explicit associations of diferent entities 
across diferent timestamps. Some interactions between diferent 
entities in various timestamps are also necessary to take into ac-
count. For example, the impact of USA in May 2003 on Afgh in 
August 2021 is important but neglected by existing models. Such 
impact is more challenging to be captured especially when the time 
interval between entities is large. 

Secondly, existing works neglect the adaptive integration of 
the long- and short-term time dependencies. Specifcally, these 
two dependencies have diferent degrees of importance to various 
entities and relations at diferent times. Some entities or relations 

Figure 2: An example of converting a TKG to a global graph. 
We take Afghanistan (Afgh) as an example, which is the com-
mon entity among the three KGs in this fgure. We link the 
Afgh entities of diferent timestamps by dotted lines to trans-
form the KG sequence shown in Figure 1 into a global graph 
(Dotted lines between other common entities are omitted in 
this fgure). 

may be more afected by long-term dependencies, while others may 
be more sensitive to short-term dependencies. 

To deal with the two aforementioned challenges, we propose a 
Hierarchical Relational Graph Neural Network to learn Long- and 
Short-term representations for TKG reasoning (HGLS). Specifcally, 
we frst transform the TKG into a global graph (§4.1), in which 
each KG with a diferent timestamp is a sub-graph. KGs at diferent 
timestamps are connected into a whole graph by linking common 
entities among them. As shown in Figure 2, the common entity Afgh 
at diferent times are connected with each other. In this way, the 
USA in January 2001 and the Afgh in August 2021 can be linked by 
a two-hop connection in the built global graph. And Afgh entities at 
diferent times are linked by a one-hop connection. These explicit 
associations are difcult to be established in the sequence data. To 
model complex semantic and temporal dependencies among entities 
in the built graph, we further design a Hierarchical Relational Graph 
Neural Network (HRGNN) (§4.2), which deals with the global graph 
from the sub-graph level and global-graph level. Afterward, we 
extract the long- and short-term representation from the two-level 
output of HRGNN (§4.3). Finally, we utilize a Gating Integration 
module (§4.4) to adaptively and dynamically fuse the long- and 
short-term representations for the entity prediction task. 

In summary, our work makes the following main contributions: 
• We design a new global graph construction method to explicitly 
associate historical entities in diferent times. Further, we develop 
a hierarchical relational graph neural network that explicitly 
captures the long-term dependencies by encoding the newly 
built global graph. 

• We propose to utilize a Gating Integration module to dynamically 
and adaptively integrate long- and short-term representations of 
entities and relations. 

• We conduct extensive experiments on four commonly used TKG 
benchmarks, which demonstrate the efectiveness of HGLS. 

2 RELATED WORK 
In this section, we review the existing approaches for TKG reason-
ing in the extrapolation setting [9, 11, 13, 17, 18, 26, 27, 34, 41], which 
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focuses on predicting new facts in the future based on historical 
events. We discuss the techniques used in the existing approaches 
and analyze their strengths and weaknesses. 

Specifcally, Know-Evolve [26] builds a temporal point process 
(TTP) to capture the continuous-time temporal dynamics, predict-
ing future facts by estimating the conditional probability of TTP. 
CyGNet [41] proposes a copy-generation mechanism that utilizes 
repeat patterns in historical facts to predict future facts while ig-
noring the high-order semantic dependencies among concurrent 
entities. In recent years, as graph neural networks (GNNs) have 
been successfully applied in many dynamic scenarios, such as traf-
fc prediction [2, 38] and recommender system [32, 39, 40], they 
have also been introduced to model structural semantic depen-
dencies in TKG reasoning. RE-NET [13] and RE-GCN [17] are the 
most relevant to our work, and they focus on modeling long- and 
short-term information, respectively. RE-NET focuses on capturing 
long-term dependencies. It models the long-term historical interac-
tions of the entities to be predicted as sequences, and incorporates 
RNNs and Relational GCNs [17, 22] to capture temporal and struc-
tural dependencies, respectively. However, due to the limitations 
of RNNs in modeling the dependency between the same entity at 
diferent times and the dependency between diferent entities at 
diferent times, RE-NET is unable to utilize long-term historical data 
efectively. Unlike RE-NET, RE-GCN primarily captures short-term 
information, which only considers adjacent structural dependen-
cies of entities and introduces more static properties of entities 
to assist prediction. The underutilization of long-term historical 
information limits the performance of RE-GCN. To capture the 
fne-grained temporal information, TANGO [10] extends the neural 
ordinary diferential equations to multi-relational graph convolu-
tional networks for forecasting future links. However, Due to the 
problem of computational complexity, the insufcient utilization of 
long-term information still exists in TANGO. 

There are also some studies [9, 24] solving the issues of TKG 
reasoning via path search. For example, xERTE [9] designs an ex-
plainable model, which fnds an enclosing subgraph around the 
query by iterartive sampling and attention propagation. TITer [24] 
presents a TKG forecasting model based on Reinforcement Learning, 
which includes a times-shaped reward based on Dirichlet distri-
bution to guide the model training. But the limited search length 
greatly limits the models’ utilization of long-term information. 

All the methods discussed above have limitations in modeling 
long- and short-term temporal dependencies, particularly in ignor-
ing the explicit dependencies between diferent entities at diferent 
timestamps in long-term history. Furthermore, they overlook the 
adaptive integration of long- and short-term information. 

3 PRELIMINARIES 
In this section, we mainly introduce the temporal knowledge graph 
(TKG) and formulate the task of TKG reasoning. 

Defnition 1 (Temporal Knowledge Graph). Let E and R rep-
resent a set of entities and relations. A quadruple �� = (�� , �, �� , �)
represents a relation � ∈ R that occurs between subject entity 
�� ∈ E and object entity �� ∈ E at time � . All quadruples occurring 
at time � constitute a knowledge graph G� . A temporal knowledge 
graph (TKG) G is defned as a sequence of knowledge graphs with 

Table 1: Important Symbols 

Symbol Explanation 

G� KG at time � in a TKG 
��
� Entity �� appears at time � 
P� Global Graph at time � 
x� , x� Static embedding of entity �� , relation � 
e�,� , e�,� Dynamic embedding of entity �� , relation � at time � 

h� � Embedding of ��� at �-th layer of sub-graph level, 
�,� , z�,� global-graph level of HRGNN 

Long-term representation of entity �� , relation � � � e�,� , e�,� at time � 
Short-term representation of entity �� , relation � � � e�,� , e�,� at time � 

diferent timestamps, i.e., G = {G1, G2, · · · , G� }. ��� indicates� ∈ G�� 
that entity �� occurs at time �� . In this paper, we defne the long-term 
history of TKG as {G� −� , G� −�+1, · · · , G� } and the short-term his-
tory of TKG as {G� −�, G� −�+1, · · · , G� }. In general, � is much 
larger than �. 

Defnition 2 (Temporal Knowledge Graph Reasoning). TKG 
Reasoning is generally categorized into entity prediction and rela-
tion prediction. The entity prediction task aims to predict the miss-
ing object entity of (�� , �, ?, � + 1) or the missing subject entity of 
(?, �, �� , � + 1) given historical KG sequence {G1, G2, · · · , G� }. And 
the relation prediction task aims to predict the missing relation of 
(�� , ?, �� , � +1) given {G1, G2, · · · , G� }. This paper focuses on the en-
tity prediction task, and the proposed model can be easily extended 
to the relation prediction task. 

Let vector x� ∈ R� and x� ∈ R� denote static embedding of each 
entity �� and relation � , where � is the dimension. In TKG scenarios, 
the semantics of entities and relations generally evolve over time. 
Under this assumption, each entity �� and relation � at time � can 

∈ R� be converted into low-dimensional embedding vector e�,� 
∈ R� and e�,� . The goal of our model is to utilize the historical 

KG sequences and static entity and relation embeddings to learn 
dynamic representations of each entity and relation for future time:� � 

e�,�+1, e�,�+1 ← Θ {G� }�
� 
=0, x� , x� , � ∈ E, � ∈ R, (1) 

where Θ, x� , and x� are learnable model function and parameters, 
respectively. Then, taking the learned embeddings e�,�+1, e�,�+1 as 
input to predict G� +1. Some important symbols used in this paper 
are listed in Table 1. 

4 METHODOLOGY 
We now present the proposed HGLS, the framework of which is 
illustrated in Figure 3. There are four components in our model: 
(1) Global Graph Construction, which is to construct a global graph 
associating the historical KGs explicitly; (2) Hierarchical Relational 
Graph Neural Network that includes two-level operations, which is 
to capture semantic and temporal dependencies among entities in 
the global graph; (3) Long- and Short-term Representation, which is 
to obtain long- and short-term representations from the output of 
HRGNN for each entity and relation; (4) Gating Integration, which 
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Figure 3: An illustration of HGLS model architecture. The temporal knowledge graph is frstly transformed into a global graph 
(§4.1), where each G�� is considered as a sub-graph. Then, the well-designed Hierarchical Relational Graph Neural Network (§4.2) 
is applied on the global graph, where sub-graph level operates on each sub-graph, and global-graph level performs operations 
on the whole graph. After that, we feed the outputs of the two levels into the MLP and GRU to obtain long- and short-term 
representations of each entity and relation, respectively (§4.3). Finally, the long- and short-term representations are fused into 
one unifed representation by Gating Integration for the entity prediction task (§4.4). 

is to adaptively fuse long- and short-term embeddings into one 
unifed representation. Appendix A provides the pseudo-code of 
the overall framework. 

4.1 Global Graph Construction 
To capture the long-term time dependencies of entities, we frst 
build a global graph to associate historical KGs explicitly. 

Specifcally, for any G�� and G� � with common entity �� in the 
long-term sequence of TKG {G� −� , G� −�+1, · · · , G� }, we add an 

� � edge between ��� and � . In this way, we can connect the KGs � � 
at diferent times by the common entities. Consequently, the KG 
sequence can be transformed into one multiplex relation graph P� , 
namely global graph, where each G�� can be seen as a sub-graph 

� � of P� and ��� along with � are set as two diferent nodes in the � � 
global graph. Taking the leftmost part of Figure 3 as an example, 
there are three KGs of various times, G�0 , G�� , and G�� , whose 
common entity is �� . The three of them are connected to each 
other through �� (by the dotted line in Figure 3). Even if the time 
interval among G�0 , G�� , and G�� is large, their entities can still 
be associated explicitly in the global graph. For example, ��� and� 
��
�0 , ��� and ��0 can be linked by one-hop and two-hop connections � �
in the global graph, respectively. These explicit relationships in 
diferent timestamps fail to be captured in the sequence scenario. 

Moreover, the constructed P� is composed of two types of triplets. 
� � One is (���� , �� , � ), �� , � � < � , where relation �� is utilized to associate � 

entities that occur at diferent times and is referred to as a time-
related relation. The other is (���� , �, ���� , ), �� < � , which indicates that 
entities �� , �� , and relation � occur at time �� , where � ∈ R. Each � 
has clear semantics and is called a semantic relation. Similar with 
each semantic relation � , we also transform �� into �-dimensional 
embedding vector x� . For brevity, in the later part we denote all 
types of relations as � ∈ R∪{�� }. 

By acting on the global graph with a multi-layer graph neu-
ral network, we can capture semantic and temporal dependencies 
between entities that appear concurrently or at diferent times. 
However, compared to typical homogeneous graphs and multi-
relational graphs, the built graph is more complex, which brings 
more challenges in its encoding. Specifcally, on the one hand, the 
global graph comprises more complicated relations, i.e., time-related 
relation and semantic relation, which are two distinct types of rela-
tionships. On the other hand, the majority of nodes in the global 
graph appear at diferent times, which contain temporal dependen-
cies between them. To this end, we develop a more refned graph 
neural network to encode the global graph in the following section. 

4.2 Hierarchical Relational Graph Neural 
Network 

To efciently encode the constructed global graph, in this section we 
design a Hierarchical Relational Graph Neural Network (HRGNN), 
which deals with the global graph at two levels. The frst level, re-
ferred to as the sub-graph level, captures the semantic dependencies 
between entities among concurrent facts. The second level, dubbed 

2415



Learning Long- and Short-term Representations for Temporal Knowledge Graph Reasoning WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

the global-graph level, models the temporal dependencies between 
entities at various times. 

4.2.1 Sub-graph Level: Modeling Semantic Dependencies among 
Concurrent Facts. For facts that occur concurrently, the entities 
generally have strong semantic relevance with their neighbors. 
Thus, we frst consider capturing the semantic dependencies among 
concurrent facts to obtain the embedding of each node h�,�� in each 
sub-graph G�� . 

In particular, we utilize a relational graph convolution neural 
network [17, 22] as a semantic aggregator to obtain the embedding 
of each node in a sub-graph G�� . Formally, the sub-graph level 
aggregator is defned as follows: ∑ � �© ª 

h� +1 ­ 1 
W� h� + W� 

2h
� ® 

�,�� 
= f ­ 1 �,�� 

+ x� �,�� ® , (2)|N�� ,�� |« ��
�� ∈N�� ,�� ¬ 

where N�� ,�� is the set of neighbors of ��� in sub-graph G�� , f (·) � 
is the RReLU function, W� 

1 and W� 
2 ∈ R� ×� are trainable weight 

parameter matrices for aggregating and self-loop in the �-th layer, 
and the initial entity embedding h0 and h0 are set to static em-�,�� �,�� 
bedding x� and x� . After �-layer convolution, we can obtain entity 
representation h� that only consider the semantic dependencies �,��
with its neighbors at time �� . We omit the superscript � and use 
h�,�� to denote the output embedding of the sub-graph level. 

4.2.2 Global-graph Level: Modeling Temporal Dependencies be-
tween Entities. After modeling semantic dependencies, the embed-
ding of each entity h�,�� in its sub-graph, i.e., the embedding con-
taining the information of its at-appearance time, can be obtained. 
To further capture the temporal dependencies between entities at 
diferent times, we perform message propagation and aggregation 
operations on the global graph based on the output of the sub-graph 
level. 

Specifcally, due to the variability in the appearance time of 
adjacent nodes in the global graph, we frst consider the infuence 

� � of time interval on each relation between entity ��� and �� . In this � 
level, the representation of each relation can be calculated by 

�, �z = x� + � ( |�� − � � |), (3)� 

where |�� − � � | represents the absolute value of time interval. Fol-
lowing [36], the time encoding function � (·) is defned as, √ 

1 
� (�) := [cos(w1� + p1), · · · , cos(w� � + p� )] , (4)

� 

where w, p ∈ R� are learnable parameter vectors. 
Then, to capture the impact of temporal and semantic depen-

dencies more precisely, we utilize an attention mechanism [19] to 
calculate the coefcient between two adjacent nodes. Formally, it 
can be formulated as: � � h i �� 

TW� � � �, � exp g a z ∥ z ∥ z3 �,�� �,� � � 
�, � 

��,� = Í � � h i �� , (5)
TW� � � �,� 

�� exp g a z ∥ z ∥ z� � ∈ e 3 �,�� �,�� � N�� ,�� 

where each initial input entity embedding z0 is the output of �,�� 

sub-graph level h�,�� , N�� ,�� is the set of neighbors of ��
�� in P� ,e 

a ∈ R3� ∈ R3� ×3� and W� are learnable weight parameters in 3 

each layer, g(·) is the LeakyReLU activation function, ·T represents 
transposition, and ∥ is the concatenation operation. 

After that, we can obtain each entity embedding in the global 
graph by aggregating the embedding from all its neighbors adap-
tively, ∑ � � 

�+1 �
�,� � �,� + W� � z�,�� = h ­­© 
�,� W

� 
4 z�,�� 

+ z� 5z�,�� ®®ª 
, (6) 

�� � ∈ e« � N�� ,�� ¬ 

where h(·) is the ReLU activation function, W� 
4 and W� 

5 are weight 
parameter matrices for aggregating and self-loop in each layer. 
After �-layer operation in global-graph level, we can get the output 
� z . For simplicity, we use z�,�� to represent the output of the global-�,��
graph level. 

4.3 Long- and Short-term Representations 
In this section, we discuss how to obtain the long- and short-term 
dynamic representations from the output of HRGNN for each entity 
and relation. 

4.3.1 Long-term Representation. Long-term representations refect 
the semantics of entities and relations over a long period of time. 
Since the global-graph level of HRGNN captures the long-term 
temporal dependencies between entities, the output of this level 
can be used as the long-term representation of each entity. We feed 
the output into a nonlinear transformation to get the long-term 
representation for each entity: 

�e�,� +1 = � (W6z�,� + b), (7) 

where � (·) is the tanh function, W6 ∈ R� ×� is the weight matrix, 
and b ∈ R� is a bias vector. 

Compared with entities, the representations of relations are rela-
tively stable in the long run [9]. So, we use their static embeddings 
as long-term representations: 

�e = x� , � ∈ R . (8)�,� +1 

4.3.2 Short-term Representation. Short-term representations re-
fect semantic changes of entities and relations in recent times. To 
capture the short-term information of entities, we use Gated Recur-
rent Unit (GRU) [3] to encode the most recent � timestamps of each 
entity based on the output at the sub-graph level. The short-term 
representation of each entity can be obtained by� � 

� � e�,�+1 = GRU� e�,� , h�,� , (9) 

where all entities share the same parameters for GRU� , h�,� is the 
output of node ��

� in the sub-graph level. 
Similarly, the short-term representation of each relation is com-

puted from the representation of the most recent � timestamps of 
relation � . We also adopt GRU to model the short-term pattern of 
relations, � � 

� � e = GRU� e , (10)�,� +1 �,� , h�,� 

where h�,� denotes the relation representation at time � , computed 
by aggregating the representations of entities interacting with the 
relation at time � : 

h�,� = Meanpooling(h�,� ), ∀�� ∈ N�
� , (11) 
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the operator Meanpooling(·) acts on the entity set N� associated � 
with � at time � , all relations share the same parameters for GRU� . 

4.4 Gating Integration 
To adaptively integrate long- and short-term representations into 
a unifed representation, we adopt a learnable gating function to 
fuse entity embedding and relation embedding [12]. Formally, the 
entity representation can be obtained by 

e�,� +1 = � (g� ) ⊙ h�,� 
� 
+1 + (1 − � (g� )) ⊙ h� (12)�,�+1, 

e�,� +1 = � (g� ) ⊙ h� 
�,�+1, (13)�,� +1 + (1 − � (g� )) ⊙ h� 

where g� , g� ∈ R� are gate vector parameters to trade-of the long-
and short- term information of each entity � and relation � , � (·)
is the Sigmoid function to constrain the value of each element in 
[0, 1], and ⊙ denotes element-wise multiplication. 

4.5 Parameter Learning 
In this section, we describe how to get the score for each quadruple 
(�� , �, �� , � + 1) and the learning objective for training HGLS. 

4.5.1 Score Function. We utilize ConvTransE [17, 23] as a decoder 
to calculate the probability of interaction between entity �� and �� 
under the relation � at time � + 1. Formally, � � � � 
�� +1 (� |�, �, G<� +1) = � e�,� +1 ConvTransE e�,� +1, e�,� +1 . (14) 

Similarly, the probability that there is an interaction of � between 
�� and �� at time � + 1 can be obtained by� � � � 
�� +1 (� |�, �, G<� +1) = � e�,� +1 ConvTransE e�,� +1, e�,� +1 , (15) 

where � (·) is Sigmod function, e�,� +1, e�,� +1, and e�,� +1 are dynamic 
representations that contain both long- and short-term information. 

4.5.2 Learning Objective. In addition to the entity prediction task, 
we also consider the relation prediction task to promote the learning 
of relation embeddings. Then, the two learning tasks can be defned 
as, 

�∑ ∑ 
L� = − log �� +1 (� |�, �, G<� +1), (16) 

� =0 (�� ,� ,�� ,�+1) ∈�� +1 

�∑ ∑ 
L� = − log �� +1 (� |�, �, G<� +1) . (17) 

� =0 (�� ,� ,�� ,� +1) ∈�� +1 

Thus, the objective function is as follows: 

L = �1L� + (1 − �1)L� + �2 ∥Θ∥2, (18) 

where �1 is a hyper-parameter to control the weight of diferent 
tasks, ∥ · ∥2 is �2 norm, and �2 is to control regularization strength. 

5 EXPERIMENTS 
In this section, we perform experiments on four temporal knowl-
edge graph datasets to evaluate our model. We aim to answer the 
following questions through experiments. 
• Q1: How does HGLS perform compared with state-of-the-art 
TKG forecasting methods on the entity prediction task? 

• Q2: How do the long-term dependencies learned from the HRGNN 
module afect the performance of HGLS? 

• Q3: How does the adaptive integration of long- and short-term 
dependencies afect the performance of HGLS? 

• Q4: How sensitive is HGLS with diferent hyper-parameters? 

5.1 Experimental Setup 
♦ Datasets. We use four typical TKG datasets in our experiments: 
ICEWS14 [6], ICEWS18 [13], ICEWS05-15 [6], and GDELT [13]. The 
frst three datasets are from the Integrated Crisis Early Warning 
System [1] and record the facts in 2014, 2018, and the facts from 
2005 to 2015, respectively. GDELT is from the Global Database of 
Events, Language, and Tone [15]. We divide ICEWS14, ICEWS18, 
ICEWS05-15, and GDELT into training, validation, and test sets 
with a proportion of 80%, 10%, and 10% by timestamps following 
[17]. The details of data statistics are shown in Appendix B. 
♦ Baselines. We compare our HGLS with static KG (SKG) and TKG 
reasoning models. The SKG models include DisMult [37],ComplEx 
[28], R-GCN [22], ConvE [5], and RotatE [25]. The TKG models 
include CyGNet [41], RE-NET [13], xERTE [9], RE-GCN [17], and 
TITer [24]. We provide implementation details of baselines and 
HGLS in Appendix C and D, respectively. 
♦ Evaluation Metrics. In the experiments, we adopt widely-used 
metrics [13, 17], MRR and Hits@{1, 10} to evaluate the model per-
formance. For a fair comparison with all baseline models, we follow 
the setup of [9, 17], utilizing the ground truth history during multi-
step inference for all compared models. Without loss of generality 
[17], we report the experimental results under the raw setting. 

5.2 Performance Comparison (RQ1) 
The performances on entity prediction task of all models are shown 
in Table 2, from which we have some following observations: 
• Most TKG models signifcantly outperform the static KG reason-
ing models (i.e., DisMult, ComplEx, R-GCN, ConvE, and RotatE) 
on all datasets, which confrmed the necessity of using temporal 
information for TKG predictions. HGLS also outperforms other 
TKG models in most of the evaluation metrics on four datasets, 
which verifes the efectiveness of our model and answers Q1. 
Specifcally, HGLS outperforms CyGNet because CyGNet mainly 
considers the repetitive patterns and ignores the high-order se-
mantic dependencies at each time. RE-Net utilizes only several 
historical interactions of the target entity in predictions, while 
RE-GCN only considers the facts that occurred in the most recent 
time and ignores the utilization of long-term information, mak-
ing them generally perform worse than our model. HGLS also 
achieves better performance than xERTE and TITer on ICEWS 
data. This is likely due to the fact that xERTE and TITer predict the 
target entity with sub-graph-based search and path-based search, 
respectively, but the limited search length greatly limits the mod-
els’ utilization of long-term information. Furthermore, the two 
models ignore the complex temporal dependencies among enti-
ties. 

• Besides, we notice that all methods perform poorly on GDELT 
compared to their performances on other datasets. The reason 
may be that most of GDELT’s entities are abstract concepts [17], 
which makes it difcult to learn their accurate representations 
in diferent quadruples and times. By learning sufcient histori-
cal information, our HGLS can obtain more general entity and 
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Table 2: Performance comparison on four datasets in terms of MRR (%), Hit@1 (%), and Hit@10 (%) (raw metrics). The best 
performance is highlighted in boldface, and the second best is underlined. 

Model 
MRR 

ICEWS14 

Hit@1 Hit@10 

ICEWS05-15 

MRR Hit@1 Hit@10 MRR 

ICEWS18 

Hit@1 Hit@10 MRR 

GDELT 

Hit@1 Hit@10 

DisMult 25.31 17.93 42.22 17.43 10.08 30.12 16.59 10.01 31.69 15.64 9.37 29.01 
ComplEx 32.33 23.21 52.37 23.14 14.56 41.63 18.84 11.41 25.78 12.23 8.30 20.36 
RGCN 28.14 19.43 46.02 27.43 20.15 44.62 18.04 8.57 35.68 10.93 4.59 22.38 
ConvE 30.93 21.74 50.18 25.25 16.07 44.34 24.28 15.61 44.59 17.28 10.34 30.63 
RotatE 27.53 18.60 47.62 19.39 10.19 38.57 15.35 7.10 33.09 5.48 1.96 13.76 

CyGNet 36.51 27.42 54.44 37.46 27.58 56.14 26.82 17.13 45.72 18.30 10.94 31.26 
RE-NET 38.91 29.32 57.51 41.72 31.14 62.03 28.42 18.41 47.92 19.01 11.36 31.39 
xERTE 39.72 31.18 57.23 44.46 34.23 63.82 27.69 18.99 45.82 18.74 11.21 32.14 

RE-GCN* 39.48 29.52 58.64 44.49 33.58 65.84 29.11 19.11 48.64 18.93 11.54 32.35 
TITer 41.18 32.13 57.94 43.99 33.67 64.11 28.09 21.13 44.01 18.63 11.04 32.34 

HGLS 47.00 35.06 70.41 46.21 35.32 67.12 29.32 19.21 49.83 19.04 11.79 33.23 

* indicates that we remove the static information from the model to ensure the fairness of comparisons between all baselines. 

relation representations, and thus perform better than other state-
of-the-art models. 

5.3 Ablation Studies (RQ2 and RQ3) 
To investigate the superiority of the HRGNN module in learning 
long-term dependencies (Q2) and the Gating Integration module in 
fusing long- and short-term information (Q3), we compare HGLS 
with diferent variants in terms of MRR: HGLS-L, which only con-
siders the long-term dependencies for entities and relations; HGLS-
S, which only considers the short-term dependencies for entities 
and relations; HGLS-Con, which uses the concatenation operation 
instead of Gating Integration module; HGLS-RGCN, which sets 
the global-graph level operation as Relational Graph Convolution 
Network; HGLS-RGAT, which neglects the time encoding in global-
graph level. We show the variant models and their results in Table 
3 and have the following fndings: 

• HGLS outperforms HGLS-L and HGLS-S on most evaluation 
metrics, which confrms that integrating long- and short-term 
information can efectively enhance the performance on the en-
tity prediction task. Specifcally, HGLS has a 20% improvement 
over the HGLS-S attributing to the introduction of long-term 
information on ICEWS14. In addition, by introducing short-term 
information, HGLS also has a 12% gain compared to HGLS-L on 
ICEWS15. Furthermore, simply concatenating long- and short-
term representation may not achieve better results. HGLS utilizes 
a learnable gate module and achieves better performance than 
HGLS-Con, verifying that the Gating Integration module can 
efectively integrate long-term and short-term information. 

• Compared to HGLS-RGCN, the performance of HGLS verifes 
that our HRGNN could efectively improve the information prop-
agation in the global graph. HGLS generally achieves better per-
formance than HGLS-RGAT in most cases. Such improvement 

Table 3: Ablation studies on entity prediction task in terms 
of MRR (%) (raw metrics). 

Model ICEWS14 ICEWS05-15 ICEWS18 GDELT 

HGLS-L 
HGLS-S 

HGLS-Con 

46.07 
39.16 
45.24 

41.20 
44.70 
45.04 

28.31 
29.16 
28.92 

18.50 
18.53 
18.65 

HGLS-RGCN 
HGLS-RGAT 

46.64 
46.97 

45.65 
45.15 

29.28 
29.15 

18.85 
18.91 

HGLS 47.00 46.21 29.32 19.04 

might be attributed to the time encoding mechanism, which en-
hances the ability to distinguish important neighbor nodes under 
the complex relations in the global graph. So, it is essential to 
design more refned information propagation mechanisms for 
the built global graph. 

5.4 Sensitivity Analysis (RQ4) 
To further explore the sensitivity of HGLS to important hyper-
parameters (Q4), we study how two hyper-parameters, the layer 
number of each level in HRGNN and the length of long- and short-
term history afect the performance of HGLS. 

5.4.1 Efect of HRGNN Layer numbers. HRGNN is a vital module 
of HGLS. The number of layers at each level decides the degree of 
modeling semantic and temporal dependencies in the global graph. 
In this part, we conduct our method with diferent layer numbers 
at each level of HRGNN module on four datasets. We set sub-graph 
level layer number � and global-graph level layer number � in the 
range of {0, 1, 2, 3, 4}. When adjusting one of the levels, the other 
level uses the optimal number of layers. For simplicity, HGLS�� 

indicates the model with � layers for sub-graph level operation, and 
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(a) ICEWS14 (b) ICEWS18 

(c) ICEWS05-15 (d) GDELT 

Figure 4: Performance (MRR %) of HGLS with diferent layer 
numbers at each level (the left y-axis shows sub-graph level 
value, and the right y-axis shows global-graph level value). 
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Figure 5: Performance of HGLS with diferent lengths of 
long-term history (the left y-axis shows MRR value, and the 
right y-axis shows Hit@1 value). 

HGLS�� indicates the model with � layers for global-graph level 
operation. The results are shown in Figure 4. The main observations 
are as follows: 

• Increasing the sub-graph level layer numbers substantially en-
hances the entity prediction. Clearly, the performance reaches 
the highest value when � is 2 for all datasets. HGLS�� (� > 0)
achieves consistent improvement over HGLS�0 , which does not 
consider the semantic dependencies among concurrent facts ex-
plicitly. We attribute the improvement to the utilization of high-
order neighbor information in concurrent facts, which enhances 
the semantic representation of entities in each timestamp. 

• Similarly, the model performance can be improved by increasing 
the number of layers in the global-graph level. Specifcally, HGLS 
achieves the best performance on ICEWS14, ICEWS18, ICEWS05, 
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Figure 6: Performance of HGLS with diferent lengths of 
short-term history (the left y-axis shows MRR value, and the 
right y-axis shows Hit@1 value). 

and GDELT when � is 3, 2, 2, and 3, respectively. HGLS�1 outper-
forms HGLS�0 in all cases, which verifes the necessity of explic-
itly modeling the long-term dependencies of entities. Moreover, 
HGLS�2 generally achieves better performance than HGLS�1 . 
Such improvement might be attributed to the explicit utiliza-
tion of information across time between diferent entities. To 
sum up, the above results illustrate that the long-term temporal 
dependencies of entities can be captured by the global graph. 

• When further stacking the propagation layer at each level, the 
performance of HGLS begins to deteriorate. This is likely due to 
over smoothing, which is consistent with the fndings in [16]. 

5.4.2 Efect of long- and short-term history. To investigate how 
long-and short-term information afects the performance, we con-
duct HGLS with diferent lengths of long- and short-term historical 
KGs on ICEWS14 and ICEWS18. The results are shown in Figure 5 
and 6, respectively. More specifcally, we fnd that the performance 
steadily grows when the length of long-term history increases from 
0 to 50, implying that introducing long-term information can efec-
tively enhance the performance of entity prediction tasks. As the 
length continued to grow, the performance of the model gradually 
remained stable. One possible reason is that longer historical infor-
mation may be less useful for prediction tasks and may introduce 
additional noise. For the short-term history, increasing its length 
can obtain the improvement of performance. However, continuing 
to increase the length does not improve the performance and even 
starts to degrade in Hit@1. The reason might be the limitation of 
the GRU net in modeling long sequences. 

6 CONCLUSION 
In this paper, we have proposed a novel method HGLS for TKG 
reasoning. The method transforms the TKG sequence into a global 
graph to explicitly associate historical entities in diferent times. A 
Hierarchical Relational Graph Neural Network (HRGNN) module 
is designed to capture long-term dependencies information among 
entities by hierarchically encoding the built global graph. Addi-
tionally, a Gating Integration module is developed to adaptively 
integrate long- and short-term information for each entity and re-
lation. The experimental results on four benchmarks and extensive 
analysis demonstrate the efectiveness and superiority of HGLS in 
the entity prediction task over TKG. 
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A PSEUDOCODE 
Algorithm 1 provides the pseudo-code of the overall framework. 

B DATASET STATISTICS 
The statistics of four TKG datasets are summarized in Table 4. 

C BASELINES 
The static KG reasoning models compared with our work are shown 
as follows: 
• DisMult [37], a model that proposes a simplifed bilinear formu-
lation to capture relational semantics. 

• ComplEx [28], a model that converts the embedding into complex 
vector space to handle symmetric and antisymmetric relations. 

• R-GCN [22], a graph neural network that handles the highly 
multi-relational graph data. 

• ConvE [5], a model that adopts a 2D convolutional neural network 
to model the interactions between entities and relations.. 

• RotatE [25], a model that defnes each relation as a rotation from 
the subject entity to object entity in the complex vector space. 
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Algorithm 1: Training procedure 

Input: Train set: TKG sequence {G0, · · · , G� }; Initial model 
parameters. 

Output: A trained HGLS model. 
1 while not converged do 
2 for t in [1 : � − 1] do 

3 

4 

5 

6 

7 

8 

9 

10 

11 

/* Global Graph Construction */ 
Obtain global graph P� from {G� −� , · · · , G� }; 
/* Hierarchical Relational GNN */ 
h�,� ← Sub-graph level, Eq (2); 
z�,� ← Global-graph level, Eq (3), (4), (5), (6) ; 
/* Long- and short-term Representations */ 
h
�,� 
� 
+1, h

� 
�,� +1 ← Eq (7), (8); 

h� 
�,� +1 ← Eq (9), (10);

�,� +1, h
� 

/* Gating Integration */ 
e�,� +1, e�,� +1 ← Gating integration, Eq (12), (13) ; 
/* Learning Objective */ 

Predicting Ge� +1 ← Eq (14), (15); 
L ← Compute the loss between Ge� +1 and G�+1, Eq 
(16), (17), (18) ; 
Update model parameters. 

Due to ignoring the time information of KG in the static model, 
we also choose some state-of-the-art TKG reasoning models to 
compare with HGLS, which include: 
• CyGNet1 [41], a model that utilizes recurrence patterns in histor-
ical facts to predict future facts. 

• RE-NET 2 [13], a model that adopts RNN to capture the historical 
dependencies of each query and RGCN to model the structural 
dependencies of each entity. 

• xERTE3 [9], an explainable model that designs a temporal re-
lational attention mechanism to extract sub-graph around the 
query. 

• RE-GCN 4 [17], a model that uses a recurrent evolution network 
based on relational graph neural networks to learn the evolution 
of entities and relations over time. Moreover, the static properties 
of entities are also incorporated via a static graph module. Since 
other compared models do not utilize additional information, we 
remove the static properties in RE-GCN to ensure the fairness of 
comparisons among models. 

• TITer5 [24], a reinforcement learning-based model, which in-
cludes a time-shaped reward based on Dirichlet distribution to 
guide the model training. 

D IMPLEMENTATION DETAILS 
We implement our HGLS in Pytorch [21] and DGL Library [30]. 
We use Adam optimizer [14] with learning rate set to 0.001 and 
�2 regularization �2 set to 10−5. The embedding size is fxed to 

1https://github.com/CunchaoZ/CyGNet 
2https://github.com/INK-USC/RE-Net 
3https://github.com/TemporalKGTeam/xERTE 
4https://github.com/Lee-zix/RE-GCN 
5https://github.com/JHL-HUST/TITer 

Table 4: The statistics of the datasets. Time gap represents 
time granularity between temporally adjacent facts. 

Datasets ICEWS14 ICEWS05-15 ICEWS18 GDELT 

# E 
# R 

6,869 
230 

10,094 
251 

23,033 
256 

7,691 
240 

# Train 
# Valid 
# Test 

Time gap 

74,845 
8,514 
7,371 

24 hours 

368,868 
46,302 
46,159 
24 hours 

373,018 
45,995 
49,545 
24 hours 

1,734,399 
238,765 
305,241 
15 mins 

0 500 1000 1500 2000

Runtime (seconds)

ICEWS14

ICEWS18

ICEWS05-15

GDELT

RE-NET xERTE HGLS RE-GCN

Figure 7: Runtime (seconds) comparison to some baselines. 

200 for all methods. For the HGLS hyper-parameters, we apply a 
grid search on the validation set: the length of short-term history 
� in {1, 2, · · · , 10}, the layer number of sug-graph level � and 
global-graph level � in {1, 2, 3, 4}, and the task coefcient �1 in 
{0.1, 0.2, · · · , 1}. 

For ICEWS14 and ICEWS18, we set the length of long-term 
history � to 365, and for ICEWS05-15 and GDELT, we set it to 500. 
The optimal length of short-term history � for ICEWS14, ICEWS05-
15, ICEWS18, and GDELT are 3, 5, 6, and 1, respectively. For HRGNN, 
the optimal sub-graph level layer number is 2 for all datasets, and 
the optimal global-graph level layer number are 3, 2, 2, and 3 for 
ICEWS14, ICEWS105-15, ICEWS18, and GDELT, respectively. For 
the R-GCN used in the sub-graph level of HRGNN, we set the block 
dimension to 2 × 2 and the dropout rate for each layer to 0.2. For 
ConvTransE of score function, the number of kernels, kernel size, 
and the dropout rate are set to 50, 2 × 3, and 0.2, respectively. The 
optimal task coefcient �1 is set to 0.7 for all datasets. For the 
compared methods, we use the default hyper-parameters except 
for dimensions. All experiments are conducted on NVIDIA Tesla 
V100 (32G) and Intel Xeon E5-2660. 

E EFFICIENCY 
To investigate the efciency of our proposed model, we compare 
HGLS with RE-GCN, xERTE, and RENET in terms of inference time 
on the test set. Figure 7 shows that HGLS is faster than xERTE and 
RE-NET, even though it models both long- and short-term depen-
dencies from history. RE-GCN is much faster than other models 
because it only considers recent historical facts. RE-NET uses a 
recurrent neural network to process historical queries recursively, 
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and xERTE searches the target entity by expanding sub-graphs it-
eratively. Since many computations in these two models cannot be 
parallelized, they are slower than the other models. HGLS is mainly 
based on the GNN model, which can perform parallel computation, 
thus ensuring a better balance of performance and efciency. 

F CASE STUDY 
To understand how our model facilitates the utilization of long-term 
historical information, we visualize some quadruples associated 
with the test entities from ICEWS14 based on the attention co-
efcients of the global-graph level of HRGNN, which are shown 
in Table 5. The two cases show that our HGLS not only can take 
advantage of the historical interactions of the test entity, such as 
the interactions (Nabih Berri, Consult, Lawmaker, 2014/10/21) and 
(Nabih Berri, Make an appeal or request, Legislature, 2014/04/16) 
when inferring (Nabih Berri, Make statement, ?, 2014/11/02), but 
also can explicitly utilize the historical interactions that are not di-
rectly related to the test entity, such as the fact (Legislature, Consult, 
Hezbollah, 2014/04/16). 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Table 5: Case study. Bolded entities indicate the answers of 
test quadruples. There are two types of associated quadruples: 
those that are directly associated with the test entity and 
those that are not. * denotes the latter. 

Test quadruple Associated quadruples 

(Nabih Berri, Consult, Lawmaker, 
(Nabih Berri, 2014/10/21) 

Make statement , (Nabih Berri, Make an appeal 
Hezbollah (?), or request, Legislature, 2014/04/16) 
2014/11/02) (Legislature, Consult, Hezbollah, 

2014/04/16)* 

(John Kerry, Praise, Iran, 2014/11/24) 
(John Kerry, (John Kerry, Consult, Mohammad 

Express intent to meet, Javad Zarif, 2014/10/15) 
Federica Mogherini (?), (Mohammad Javad Zarif, Discuss by 

2014/11/25) telephone, Federica Mogherini, 
2014/10/15)* 
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