
Learning Long- and Short-term Representations for Temporal
Knowledge Graph Reasoning

Mengqi Zhang Yuwei Xia Qiang Liu∗

School of Artifcial Intelligence, School of Cyber Security, School of Artifcial Intelligence,
University of Chinese Academy of University of Chinese Academy of University of Chinese Academy of

Sciences Sciences Sciences
CRIPAC, MAIS, Institute of Institute of Information Engineering, CRIPAC, MAIS, Institute of

Automation, Chinese Academy of Chinese Academy of Sciences Automation, Chinese Academy of
Sciences Beijing, China Sciences

Beijing, China xiayuwei@iie.ac.cn Beijing, China
mengqi.zhang@cripac.ia.ac.cn qiang.liu@nlpr.ia.ac.cn

Shu Wu Liang Wang
School of Artifcial Intelligence, School of Artifcial Intelligence,

University of Chinese Academy of University of Chinese Academy of
Sciences Sciences

CRIPAC, MAIS, Institute of CRIPAC, MAIS, Institute of
Automation, Chinese Academy of Automation, Chinese Academy of

Sciences Sciences
Beijing, China Beijing, China

shu.wu@nlpr.ia.ac.cn wangliang@nlpr.ia.ac.cn

ABSTRACT
Temporal Knowledge graph (TKG) reasoning aims to predict miss-
ing facts based on historical TKG data. Most of the existing methods
are incapable of explicitly modeling the long-term time dependen-
cies from history and neglect the adaptive integration of the long-
and short-term information. To tackle these problems, we propose a
novel method that utilizes a designed Hierarchical Relational Graph
Neural Network to learn the Long- and Short-term representations
for TKG reasoning, namely HGLS. Specifcally, to explicitly asso-
ciate entities in diferent timestamps, we frst transform the TKG
into a global graph. Based on the built graph, we design a Hierar-
chical Relational Graph Neural Network that executes in two levels:
The sub-graph level is to capture the semantic dependencies within
concurrent facts of each KG. And the global-graph level aims to
model the temporal dependencies between entities. Furthermore,
we design a module to extract the long- and short-term informa-
tion from the output of these two levels. Finally, the long- and
short-term representations are fused into a unifed one by Gating
Integration for entity prediction. Extensive experiments on four
datasets demonstrate the efectiveness of HGLS.

∗To whom correspondence should be addressed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583242

CCS CONCEPTS
• Computing methodologies → Temporal reasoning.

KEYWORDS
temporal knowledge graph, graph neural network, long- and short-
term information

ACM Reference Format:
Mengqi Zhang, Yuwei Xia, Qiang Liu, Shu Wu, and Liang Wang. 2023.
Learning Long- and Short-term Representations for Temporal Knowledge
Graph Reasoning. In Proceedings of the ACM Web Conference 2023 (WWW
’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3543507.3583242

1 INTRODUCTION
Temporal Knowledge Graph (TKG) is a type of dynamic multi-
relational graph data used to record evolutionary events and knowl-
edge in the real world. Most of TKG data is automatically identifed
and extracted from a variety of international news articles, such as
ICEWS [1] and GDELT [15] data. Each fact in a TKG is represented
by a quadruple (�, �, �, �), such as (Obama, run for, president, 2012).
Reasoning over TKG has gained much attention in recent years
due to its great practical value in event prediction [4], question
answering [20], and other areas.

Reasoning over TKG primarily has two settings: interpolation
and extrapolation [13]. Given a TKG with timestamps from �0 to �� ,
interpolation [7, 8, 31, 33, 35] mainly aims at inferring missing facts
that occur at time � , where �0 < � < �� . Oppositely, extrapolation
[9, 11, 13, 17, 26, 27, 41] attempts to predict facts that occur at time
t with � > �� . In this paper, we mainly focus on predicting facts in
future timestamps (� .� ., extrapolation setting).

2412

https://doi.org/10.1145/3543507.3583242
https://doi.org/10.1145/3543507.3583242
mailto:wangliang@nlpr.ia.ac.cn
mailto:permissions@acm.org
mailto:shu.wu@nlpr.ia.ac.cn
mailto:qiang.liu@nlpr.ia.ac.cn
mailto:xiayuwei@iie.ac.cn
mailto:mengqi.zhang@cripac.ia.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583242&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Mengqi Zhang, et al.

Figure 1: An example of reasoning over TKG. We display
three KGs at diferent timestamps. Each edge indicates the
interaction between two entities.

For accurately inferring a future fact, it is common to consider
the long-ago history related to the fact and recent events because
they carry important long- and short-term time dependencies
for prediction. As shown in Figure 1, we illustrate an example
of reasoning over TKG. The goal is to predict who will govern
Afghanistan (Afgh) in September 2021. From the long-term per-
spective, the fact occurred in January 2001 demonstrates that USA
started a war in Afgh. Though 2001 is long ago, what happened in
2001 signifcantly infuences the situation of Afgh in 2021. From
the short-term perspective, the recent facts that occurred in Au-
gust 2021, such as (Russia, Approve, Taliban) and (Taliban, Surround,
Afgh), obviously afect the situation of Afgh in September 2021.

Some preceding extrapolation TKG reasoning models such as
Know-Evolve [26], model all the historical facts as a temporal point
process. While some recent attempts, such as RE-NET [13] and
RE-GCN [17], incorporate the Graph Neural Network (GNN) into
sequence models to capture structural and temporal dependen-
cies between entities. Moreover, xERTE [9] and TITer [24] design
explainable models based on subgraph search and reinforcement
learning, respectively. Although these models achieve promising re-
sults in TKG reasoning, there are still some drawbacks in modeling
long- and short-term time dependencies.

Firstly, existing methods do not explicitly leverage long-term
time dependencies. On the one hand, they are unable to explicitly
model the long-term time dependencies of the same entities occur-
ring at diferent timestamps. Most of them rely on recurrent se-
quence models to capture temporal dependencies in history, which
encode long-term history sequence implicitly and thus easily re-
sult in the loss of crucial long-term information [29], such as the
important implication of Afgh in 2001 for its state in 2021. On the
other hand, they ignore the explicit associations of diferent entities
across diferent timestamps. Some interactions between diferent
entities in various timestamps are also necessary to take into ac-
count. For example, the impact of USA in May 2003 on Afgh in
August 2021 is important but neglected by existing models. Such
impact is more challenging to be captured especially when the time
interval between entities is large.

Secondly, existing works neglect the adaptive integration of
the long- and short-term time dependencies. Specifcally, these
two dependencies have diferent degrees of importance to various
entities and relations at diferent times. Some entities or relations

Figure 2: An example of converting a TKG to a global graph.
We take Afghanistan (Afgh) as an example, which is the com-
mon entity among the three KGs in this fgure. We link the
Afgh entities of diferent timestamps by dotted lines to trans-
form the KG sequence shown in Figure 1 into a global graph
(Dotted lines between other common entities are omitted in
this fgure).

may be more afected by long-term dependencies, while others may
be more sensitive to short-term dependencies.

To deal with the two aforementioned challenges, we propose a
Hierarchical Relational Graph Neural Network to learn Long- and
Short-term representations for TKG reasoning (HGLS). Specifcally,
we frst transform the TKG into a global graph (§4.1), in which
each KG with a diferent timestamp is a sub-graph. KGs at diferent
timestamps are connected into a whole graph by linking common
entities among them. As shown in Figure 2, the common entity Afgh
at diferent times are connected with each other. In this way, the
USA in January 2001 and the Afgh in August 2021 can be linked by
a two-hop connection in the built global graph. And Afgh entities at
diferent times are linked by a one-hop connection. These explicit
associations are difcult to be established in the sequence data. To
model complex semantic and temporal dependencies among entities
in the built graph, we further design a Hierarchical Relational Graph
Neural Network (HRGNN) (§4.2), which deals with the global graph
from the sub-graph level and global-graph level. Afterward, we
extract the long- and short-term representation from the two-level
output of HRGNN (§4.3). Finally, we utilize a Gating Integration
module (§4.4) to adaptively and dynamically fuse the long- and
short-term representations for the entity prediction task.

In summary, our work makes the following main contributions:
• We design a new global graph construction method to explicitly
associate historical entities in diferent times. Further, we develop
a hierarchical relational graph neural network that explicitly
captures the long-term dependencies by encoding the newly
built global graph.

• We propose to utilize a Gating Integration module to dynamically
and adaptively integrate long- and short-term representations of
entities and relations.

• We conduct extensive experiments on four commonly used TKG
benchmarks, which demonstrate the efectiveness of HGLS.

2 RELATED WORK
In this section, we review the existing approaches for TKG reason-
ing in the extrapolation setting [9, 11, 13, 17, 18, 26, 27, 34, 41], which

2413

Learning Long- and Short-term Representations for Temporal Knowledge Graph Reasoning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

focuses on predicting new facts in the future based on historical
events. We discuss the techniques used in the existing approaches
and analyze their strengths and weaknesses.

Specifcally, Know-Evolve [26] builds a temporal point process
(TTP) to capture the continuous-time temporal dynamics, predict-
ing future facts by estimating the conditional probability of TTP.
CyGNet [41] proposes a copy-generation mechanism that utilizes
repeat patterns in historical facts to predict future facts while ig-
noring the high-order semantic dependencies among concurrent
entities. In recent years, as graph neural networks (GNNs) have
been successfully applied in many dynamic scenarios, such as traf-
fc prediction [2, 38] and recommender system [32, 39, 40], they
have also been introduced to model structural semantic depen-
dencies in TKG reasoning. RE-NET [13] and RE-GCN [17] are the
most relevant to our work, and they focus on modeling long- and
short-term information, respectively. RE-NET focuses on capturing
long-term dependencies. It models the long-term historical interac-
tions of the entities to be predicted as sequences, and incorporates
RNNs and Relational GCNs [17, 22] to capture temporal and struc-
tural dependencies, respectively. However, due to the limitations
of RNNs in modeling the dependency between the same entity at
diferent times and the dependency between diferent entities at
diferent times, RE-NET is unable to utilize long-term historical data
efectively. Unlike RE-NET, RE-GCN primarily captures short-term
information, which only considers adjacent structural dependen-
cies of entities and introduces more static properties of entities
to assist prediction. The underutilization of long-term historical
information limits the performance of RE-GCN. To capture the
fne-grained temporal information, TANGO [10] extends the neural
ordinary diferential equations to multi-relational graph convolu-
tional networks for forecasting future links. However, Due to the
problem of computational complexity, the insufcient utilization of
long-term information still exists in TANGO.

There are also some studies [9, 24] solving the issues of TKG
reasoning via path search. For example, xERTE [9] designs an ex-
plainable model, which fnds an enclosing subgraph around the
query by iterartive sampling and attention propagation. TITer [24]
presents a TKG forecasting model based on Reinforcement Learning,
which includes a times-shaped reward based on Dirichlet distri-
bution to guide the model training. But the limited search length
greatly limits the models’ utilization of long-term information.

All the methods discussed above have limitations in modeling
long- and short-term temporal dependencies, particularly in ignor-
ing the explicit dependencies between diferent entities at diferent
timestamps in long-term history. Furthermore, they overlook the
adaptive integration of long- and short-term information.

3 PRELIMINARIES
In this section, we mainly introduce the temporal knowledge graph
(TKG) and formulate the task of TKG reasoning.

Defnition 1 (Temporal Knowledge Graph). Let E and R rep-
resent a set of entities and relations. A quadruple �� = (�� , �, �� , �)
represents a relation � ∈ R that occurs between subject entity
�� ∈ E and object entity �� ∈ E at time � . All quadruples occurring
at time � constitute a knowledge graph G� . A temporal knowledge
graph (TKG) G is defned as a sequence of knowledge graphs with

Table 1: Important Symbols

Symbol Explanation

G� KG at time � in a TKG
��
� Entity �� appears at time �
P� Global Graph at time �
x� , x� Static embedding of entity �� , relation �
e�,� , e�,� Dynamic embedding of entity �� , relation � at time �

h� � Embedding of ��� at �-th layer of sub-graph level,
�,� , z�,� global-graph level of HRGNN

Long-term representation of entity �� , relation � � � e�,� , e�,� at time �
Short-term representation of entity �� , relation � � � e�,� , e�,� at time �

diferent timestamps, i.e., G = {G1, G2, · · · , G� }. ��� indicates� ∈ G��
that entity �� occurs at time �� . In this paper, we defne the long-term
history of TKG as {G� −� , G� −�+1, · · · , G� } and the short-term his-
tory of TKG as {G� −�, G� −�+1, · · · , G� }. In general, � is much
larger than �.

Defnition 2 (Temporal Knowledge Graph Reasoning). TKG
Reasoning is generally categorized into entity prediction and rela-
tion prediction. The entity prediction task aims to predict the miss-
ing object entity of (�� , �, ?, � + 1) or the missing subject entity of
(?, �, �� , � + 1) given historical KG sequence {G1, G2, · · · , G� }. And
the relation prediction task aims to predict the missing relation of
(�� , ?, �� , � +1) given {G1, G2, · · · , G� }. This paper focuses on the en-
tity prediction task, and the proposed model can be easily extended
to the relation prediction task.

Let vector x� ∈ R� and x� ∈ R� denote static embedding of each
entity �� and relation � , where � is the dimension. In TKG scenarios,
the semantics of entities and relations generally evolve over time.
Under this assumption, each entity �� and relation � at time � can

∈ R� be converted into low-dimensional embedding vector e�,�
∈ R� and e�,� . The goal of our model is to utilize the historical

KG sequences and static entity and relation embeddings to learn
dynamic representations of each entity and relation for future time:� �

e�,�+1, e�,�+1 ← Θ {G� }�
�
=0, x� , x� , � ∈ E, � ∈ R, (1)

where Θ, x� , and x� are learnable model function and parameters,
respectively. Then, taking the learned embeddings e�,�+1, e�,�+1 as
input to predict G� +1. Some important symbols used in this paper
are listed in Table 1.

4 METHODOLOGY
We now present the proposed HGLS, the framework of which is
illustrated in Figure 3. There are four components in our model:
(1) Global Graph Construction, which is to construct a global graph
associating the historical KGs explicitly; (2) Hierarchical Relational
Graph Neural Network that includes two-level operations, which is
to capture semantic and temporal dependencies among entities in
the global graph; (3) Long- and Short-term Representation, which is
to obtain long- and short-term representations from the output of
HRGNN for each entity and relation; (4) Gating Integration, which

2414

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Mengqi Zhang, et al.

...

�0

��
��

...

... ...

...
...

...

...

G
R

U

...

M
LP

...
?

��+�
�0

...

...
...

��
��

...

��

��

��

��

��

Graph Construction Two levels of HRGNN

Sub-graph level

Global-graph level Long-term Representation

Short-term Representation

�0

��
��

...

�0

��

��

...

��
��

��
�0

��
�0

��
��

Gating
Integration

...

G
ate

� = 1

� = 1

Figure 3: An illustration of HGLS model architecture. The temporal knowledge graph is frstly transformed into a global graph
(§4.1), where each G�� is considered as a sub-graph. Then, the well-designed Hierarchical Relational Graph Neural Network (§4.2)
is applied on the global graph, where sub-graph level operates on each sub-graph, and global-graph level performs operations
on the whole graph. After that, we feed the outputs of the two levels into the MLP and GRU to obtain long- and short-term
representations of each entity and relation, respectively (§4.3). Finally, the long- and short-term representations are fused into
one unifed representation by Gating Integration for the entity prediction task (§4.4).

is to adaptively fuse long- and short-term embeddings into one
unifed representation. Appendix A provides the pseudo-code of
the overall framework.

4.1 Global Graph Construction
To capture the long-term time dependencies of entities, we frst
build a global graph to associate historical KGs explicitly.

Specifcally, for any G�� and G� � with common entity �� in the
long-term sequence of TKG {G� −� , G� −�+1, · · · , G� }, we add an

� � edge between ��� and � . In this way, we can connect the KGs � �
at diferent times by the common entities. Consequently, the KG
sequence can be transformed into one multiplex relation graph P� ,
namely global graph, where each G�� can be seen as a sub-graph

� � of P� and ��� along with � are set as two diferent nodes in the � �
global graph. Taking the leftmost part of Figure 3 as an example,
there are three KGs of various times, G�0 , G�� , and G�� , whose
common entity is �� . The three of them are connected to each
other through �� (by the dotted line in Figure 3). Even if the time
interval among G�0 , G�� , and G�� is large, their entities can still
be associated explicitly in the global graph. For example, ��� and�
��
�0 , ��� and ��0 can be linked by one-hop and two-hop connections � �
in the global graph, respectively. These explicit relationships in
diferent timestamps fail to be captured in the sequence scenario.

Moreover, the constructed P� is composed of two types of triplets.
� � One is (���� , �� , �), �� , � � < � , where relation �� is utilized to associate �

entities that occur at diferent times and is referred to as a time-
related relation. The other is (���� , �, ���� ,), �� < � , which indicates that
entities �� , �� , and relation � occur at time �� , where � ∈ R. Each �
has clear semantics and is called a semantic relation. Similar with
each semantic relation � , we also transform �� into �-dimensional
embedding vector x� . For brevity, in the later part we denote all
types of relations as � ∈ R∪{�� }.

By acting on the global graph with a multi-layer graph neu-
ral network, we can capture semantic and temporal dependencies
between entities that appear concurrently or at diferent times.
However, compared to typical homogeneous graphs and multi-
relational graphs, the built graph is more complex, which brings
more challenges in its encoding. Specifcally, on the one hand, the
global graph comprises more complicated relations, i.e., time-related
relation and semantic relation, which are two distinct types of rela-
tionships. On the other hand, the majority of nodes in the global
graph appear at diferent times, which contain temporal dependen-
cies between them. To this end, we develop a more refned graph
neural network to encode the global graph in the following section.

4.2 Hierarchical Relational Graph Neural
Network

To efciently encode the constructed global graph, in this section we
design a Hierarchical Relational Graph Neural Network (HRGNN),
which deals with the global graph at two levels. The frst level, re-
ferred to as the sub-graph level, captures the semantic dependencies
between entities among concurrent facts. The second level, dubbed

2415

Learning Long- and Short-term Representations for Temporal Knowledge Graph Reasoning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

the global-graph level, models the temporal dependencies between
entities at various times.

4.2.1 Sub-graph Level: Modeling Semantic Dependencies among
Concurrent Facts. For facts that occur concurrently, the entities
generally have strong semantic relevance with their neighbors.
Thus, we frst consider capturing the semantic dependencies among
concurrent facts to obtain the embedding of each node h�,�� in each
sub-graph G�� .

In particular, we utilize a relational graph convolution neural
network [17, 22] as a semantic aggregator to obtain the embedding
of each node in a sub-graph G�� . Formally, the sub-graph level
aggregator is defned as follows: ∑ � �© ª

h� +1 ­ 1
W� h� + W�

2h
� ®

�,��
= f ­ 1 �,��

+ x� �,�� ® , (2)|N�� ,�� |« ��
�� ∈N�� ,�� ¬

where N�� ,�� is the set of neighbors of ��� in sub-graph G�� , f (·) �
is the RReLU function, W�

1 and W�
2 ∈ R� ×� are trainable weight

parameter matrices for aggregating and self-loop in the �-th layer,
and the initial entity embedding h0 and h0 are set to static em-�,�� �,��
bedding x� and x� . After �-layer convolution, we can obtain entity
representation h� that only consider the semantic dependencies �,��
with its neighbors at time �� . We omit the superscript � and use
h�,�� to denote the output embedding of the sub-graph level.

4.2.2 Global-graph Level: Modeling Temporal Dependencies be-
tween Entities. After modeling semantic dependencies, the embed-
ding of each entity h�,�� in its sub-graph, i.e., the embedding con-
taining the information of its at-appearance time, can be obtained.
To further capture the temporal dependencies between entities at
diferent times, we perform message propagation and aggregation
operations on the global graph based on the output of the sub-graph
level.

Specifcally, due to the variability in the appearance time of
adjacent nodes in the global graph, we frst consider the infuence

� � of time interval on each relation between entity ��� and �� . In this �
level, the representation of each relation can be calculated by

�, �z = x� + � (|�� − � � |), (3)�

where |�� − � � | represents the absolute value of time interval. Fol-
lowing [36], the time encoding function � (·) is defned as, √

1
� (�) := [cos(w1� + p1), · · · , cos(w� � + p�)] , (4)

�

where w, p ∈ R� are learnable parameter vectors.
Then, to capture the impact of temporal and semantic depen-

dencies more precisely, we utilize an attention mechanism [19] to
calculate the coefcient between two adjacent nodes. Formally, it
can be formulated as: � � h i ��

TW� � � �, � exp g a z ∥ z ∥ z3 �,�� �,� � �
�, �

��,� = Í � � h i �� , (5)
TW� � � �,�

�� exp g a z ∥ z ∥ z� � ∈ e 3 �,�� �,�� � N�� ,��

where each initial input entity embedding z0 is the output of �,��

sub-graph level h�,�� , N�� ,�� is the set of neighbors of ��
�� in P� ,e

a ∈ R3� ∈ R3� ×3� and W� are learnable weight parameters in 3

each layer, g(·) is the LeakyReLU activation function, ·T represents
transposition, and ∥ is the concatenation operation.

After that, we can obtain each entity embedding in the global
graph by aggregating the embedding from all its neighbors adap-
tively, ∑ � �

�+1 �
�,� � �,� + W� � z�,�� = h ­­©
�,� W

�
4 z�,��

+ z� 5z�,�� ®®ª
, (6)

�� � ∈ e« � N�� ,�� ¬

where h(·) is the ReLU activation function, W�
4 and W�

5 are weight
parameter matrices for aggregating and self-loop in each layer.
After �-layer operation in global-graph level, we can get the output
� z . For simplicity, we use z�,�� to represent the output of the global-�,��
graph level.

4.3 Long- and Short-term Representations
In this section, we discuss how to obtain the long- and short-term
dynamic representations from the output of HRGNN for each entity
and relation.

4.3.1 Long-term Representation. Long-term representations refect
the semantics of entities and relations over a long period of time.
Since the global-graph level of HRGNN captures the long-term
temporal dependencies between entities, the output of this level
can be used as the long-term representation of each entity. We feed
the output into a nonlinear transformation to get the long-term
representation for each entity:

�e�,� +1 = � (W6z�,� + b), (7)

where � (·) is the tanh function, W6 ∈ R� ×� is the weight matrix,
and b ∈ R� is a bias vector.

Compared with entities, the representations of relations are rela-
tively stable in the long run [9]. So, we use their static embeddings
as long-term representations:

�e = x� , � ∈ R . (8)�,� +1

4.3.2 Short-term Representation. Short-term representations re-
fect semantic changes of entities and relations in recent times. To
capture the short-term information of entities, we use Gated Recur-
rent Unit (GRU) [3] to encode the most recent � timestamps of each
entity based on the output at the sub-graph level. The short-term
representation of each entity can be obtained by� �

� � e�,�+1 = GRU� e�,� , h�,� , (9)

where all entities share the same parameters for GRU� , h�,� is the
output of node ��

� in the sub-graph level.
Similarly, the short-term representation of each relation is com-

puted from the representation of the most recent � timestamps of
relation � . We also adopt GRU to model the short-term pattern of
relations, � �

� � e = GRU� e , (10)�,� +1 �,� , h�,�

where h�,� denotes the relation representation at time � , computed
by aggregating the representations of entities interacting with the
relation at time � :

h�,� = Meanpooling(h�,�), ∀�� ∈ N�
� , (11)

2416

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Mengqi Zhang, et al.

the operator Meanpooling(·) acts on the entity set N� associated �
with � at time � , all relations share the same parameters for GRU� .

4.4 Gating Integration
To adaptively integrate long- and short-term representations into
a unifed representation, we adopt a learnable gating function to
fuse entity embedding and relation embedding [12]. Formally, the
entity representation can be obtained by

e�,� +1 = � (g�) ⊙ h�,�
�
+1 + (1 − � (g�)) ⊙ h� (12)�,�+1,

e�,� +1 = � (g�) ⊙ h�
�,�+1, (13)�,� +1 + (1 − � (g�)) ⊙ h�

where g� , g� ∈ R� are gate vector parameters to trade-of the long-
and short- term information of each entity � and relation � , � (·)
is the Sigmoid function to constrain the value of each element in
[0, 1], and ⊙ denotes element-wise multiplication.

4.5 Parameter Learning
In this section, we describe how to get the score for each quadruple
(�� , �, �� , � + 1) and the learning objective for training HGLS.

4.5.1 Score Function. We utilize ConvTransE [17, 23] as a decoder
to calculate the probability of interaction between entity �� and ��
under the relation � at time � + 1. Formally, � � � �
�� +1 (� |�, �, G<� +1) = � e�,� +1 ConvTransE e�,� +1, e�,� +1 . (14)

Similarly, the probability that there is an interaction of � between
�� and �� at time � + 1 can be obtained by� � � �
�� +1 (� |�, �, G<� +1) = � e�,� +1 ConvTransE e�,� +1, e�,� +1 , (15)

where � (·) is Sigmod function, e�,� +1, e�,� +1, and e�,� +1 are dynamic
representations that contain both long- and short-term information.

4.5.2 Learning Objective. In addition to the entity prediction task,
we also consider the relation prediction task to promote the learning
of relation embeddings. Then, the two learning tasks can be defned
as,

�∑ ∑
L� = − log �� +1 (� |�, �, G<� +1), (16)

� =0 (�� ,� ,�� ,�+1) ∈�� +1

�∑ ∑
L� = − log �� +1 (� |�, �, G<� +1) . (17)

� =0 (�� ,� ,�� ,� +1) ∈�� +1

Thus, the objective function is as follows:

L = �1L� + (1 − �1)L� + �2 ∥Θ∥2, (18)

where �1 is a hyper-parameter to control the weight of diferent
tasks, ∥ · ∥2 is �2 norm, and �2 is to control regularization strength.

5 EXPERIMENTS
In this section, we perform experiments on four temporal knowl-
edge graph datasets to evaluate our model. We aim to answer the
following questions through experiments.
• Q1: How does HGLS perform compared with state-of-the-art
TKG forecasting methods on the entity prediction task?

• Q2: How do the long-term dependencies learned from the HRGNN
module afect the performance of HGLS?

• Q3: How does the adaptive integration of long- and short-term
dependencies afect the performance of HGLS?

• Q4: How sensitive is HGLS with diferent hyper-parameters?

5.1 Experimental Setup
♦ Datasets. We use four typical TKG datasets in our experiments:
ICEWS14 [6], ICEWS18 [13], ICEWS05-15 [6], and GDELT [13]. The
frst three datasets are from the Integrated Crisis Early Warning
System [1] and record the facts in 2014, 2018, and the facts from
2005 to 2015, respectively. GDELT is from the Global Database of
Events, Language, and Tone [15]. We divide ICEWS14, ICEWS18,
ICEWS05-15, and GDELT into training, validation, and test sets
with a proportion of 80%, 10%, and 10% by timestamps following
[17]. The details of data statistics are shown in Appendix B.
♦ Baselines. We compare our HGLS with static KG (SKG) and TKG
reasoning models. The SKG models include DisMult [37],ComplEx
[28], R-GCN [22], ConvE [5], and RotatE [25]. The TKG models
include CyGNet [41], RE-NET [13], xERTE [9], RE-GCN [17], and
TITer [24]. We provide implementation details of baselines and
HGLS in Appendix C and D, respectively.
♦ Evaluation Metrics. In the experiments, we adopt widely-used
metrics [13, 17], MRR and Hits@{1, 10} to evaluate the model per-
formance. For a fair comparison with all baseline models, we follow
the setup of [9, 17], utilizing the ground truth history during multi-
step inference for all compared models. Without loss of generality
[17], we report the experimental results under the raw setting.

5.2 Performance Comparison (RQ1)
The performances on entity prediction task of all models are shown
in Table 2, from which we have some following observations:
• Most TKG models signifcantly outperform the static KG reason-
ing models (i.e., DisMult, ComplEx, R-GCN, ConvE, and RotatE)
on all datasets, which confrmed the necessity of using temporal
information for TKG predictions. HGLS also outperforms other
TKG models in most of the evaluation metrics on four datasets,
which verifes the efectiveness of our model and answers Q1.
Specifcally, HGLS outperforms CyGNet because CyGNet mainly
considers the repetitive patterns and ignores the high-order se-
mantic dependencies at each time. RE-Net utilizes only several
historical interactions of the target entity in predictions, while
RE-GCN only considers the facts that occurred in the most recent
time and ignores the utilization of long-term information, mak-
ing them generally perform worse than our model. HGLS also
achieves better performance than xERTE and TITer on ICEWS
data. This is likely due to the fact that xERTE and TITer predict the
target entity with sub-graph-based search and path-based search,
respectively, but the limited search length greatly limits the mod-
els’ utilization of long-term information. Furthermore, the two
models ignore the complex temporal dependencies among enti-
ties.

• Besides, we notice that all methods perform poorly on GDELT
compared to their performances on other datasets. The reason
may be that most of GDELT’s entities are abstract concepts [17],
which makes it difcult to learn their accurate representations
in diferent quadruples and times. By learning sufcient histori-
cal information, our HGLS can obtain more general entity and

2417

Learning Long- and Short-term Representations for Temporal Knowledge Graph Reasoning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 2: Performance comparison on four datasets in terms of MRR (%), Hit@1 (%), and Hit@10 (%) (raw metrics). The best
performance is highlighted in boldface, and the second best is underlined.

Model
MRR

ICEWS14

Hit@1 Hit@10

ICEWS05-15

MRR Hit@1 Hit@10 MRR

ICEWS18

Hit@1 Hit@10 MRR

GDELT

Hit@1 Hit@10

DisMult 25.31 17.93 42.22 17.43 10.08 30.12 16.59 10.01 31.69 15.64 9.37 29.01
ComplEx 32.33 23.21 52.37 23.14 14.56 41.63 18.84 11.41 25.78 12.23 8.30 20.36
RGCN 28.14 19.43 46.02 27.43 20.15 44.62 18.04 8.57 35.68 10.93 4.59 22.38
ConvE 30.93 21.74 50.18 25.25 16.07 44.34 24.28 15.61 44.59 17.28 10.34 30.63
RotatE 27.53 18.60 47.62 19.39 10.19 38.57 15.35 7.10 33.09 5.48 1.96 13.76

CyGNet 36.51 27.42 54.44 37.46 27.58 56.14 26.82 17.13 45.72 18.30 10.94 31.26
RE-NET 38.91 29.32 57.51 41.72 31.14 62.03 28.42 18.41 47.92 19.01 11.36 31.39
xERTE 39.72 31.18 57.23 44.46 34.23 63.82 27.69 18.99 45.82 18.74 11.21 32.14

RE-GCN* 39.48 29.52 58.64 44.49 33.58 65.84 29.11 19.11 48.64 18.93 11.54 32.35
TITer 41.18 32.13 57.94 43.99 33.67 64.11 28.09 21.13 44.01 18.63 11.04 32.34

HGLS 47.00 35.06 70.41 46.21 35.32 67.12 29.32 19.21 49.83 19.04 11.79 33.23

* indicates that we remove the static information from the model to ensure the fairness of comparisons between all baselines.

relation representations, and thus perform better than other state-
of-the-art models.

5.3 Ablation Studies (RQ2 and RQ3)
To investigate the superiority of the HRGNN module in learning
long-term dependencies (Q2) and the Gating Integration module in
fusing long- and short-term information (Q3), we compare HGLS
with diferent variants in terms of MRR: HGLS-L, which only con-
siders the long-term dependencies for entities and relations; HGLS-
S, which only considers the short-term dependencies for entities
and relations; HGLS-Con, which uses the concatenation operation
instead of Gating Integration module; HGLS-RGCN, which sets
the global-graph level operation as Relational Graph Convolution
Network; HGLS-RGAT, which neglects the time encoding in global-
graph level. We show the variant models and their results in Table
3 and have the following fndings:

• HGLS outperforms HGLS-L and HGLS-S on most evaluation
metrics, which confrms that integrating long- and short-term
information can efectively enhance the performance on the en-
tity prediction task. Specifcally, HGLS has a 20% improvement
over the HGLS-S attributing to the introduction of long-term
information on ICEWS14. In addition, by introducing short-term
information, HGLS also has a 12% gain compared to HGLS-L on
ICEWS15. Furthermore, simply concatenating long- and short-
term representation may not achieve better results. HGLS utilizes
a learnable gate module and achieves better performance than
HGLS-Con, verifying that the Gating Integration module can
efectively integrate long-term and short-term information.

• Compared to HGLS-RGCN, the performance of HGLS verifes
that our HRGNN could efectively improve the information prop-
agation in the global graph. HGLS generally achieves better per-
formance than HGLS-RGAT in most cases. Such improvement

Table 3: Ablation studies on entity prediction task in terms
of MRR (%) (raw metrics).

Model ICEWS14 ICEWS05-15 ICEWS18 GDELT

HGLS-L
HGLS-S

HGLS-Con

46.07
39.16
45.24

41.20
44.70
45.04

28.31
29.16
28.92

18.50
18.53
18.65

HGLS-RGCN
HGLS-RGAT

46.64
46.97

45.65
45.15

29.28
29.15

18.85
18.91

HGLS 47.00 46.21 29.32 19.04

might be attributed to the time encoding mechanism, which en-
hances the ability to distinguish important neighbor nodes under
the complex relations in the global graph. So, it is essential to
design more refned information propagation mechanisms for
the built global graph.

5.4 Sensitivity Analysis (RQ4)
To further explore the sensitivity of HGLS to important hyper-
parameters (Q4), we study how two hyper-parameters, the layer
number of each level in HRGNN and the length of long- and short-
term history afect the performance of HGLS.

5.4.1 Efect of HRGNN Layer numbers. HRGNN is a vital module
of HGLS. The number of layers at each level decides the degree of
modeling semantic and temporal dependencies in the global graph.
In this part, we conduct our method with diferent layer numbers
at each level of HRGNN module on four datasets. We set sub-graph
level layer number � and global-graph level layer number � in the
range of {0, 1, 2, 3, 4}. When adjusting one of the levels, the other
level uses the optimal number of layers. For simplicity, HGLS��

indicates the model with � layers for sub-graph level operation, and

2418

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Mengqi Zhang, et al.

(a) ICEWS14 (b) ICEWS18

(c) ICEWS05-15 (d) GDELT

Figure 4: Performance (MRR %) of HGLS with diferent layer
numbers at each level (the left y-axis shows sub-graph level
value, and the right y-axis shows global-graph level value).

0 50 100
Long-term history

40

43

47

30

33

36

MRR (%)

Hit@1 (%)

0 50 100
Long-term history

28

29

29

18

19

20

MRR (%)

Hit@1 (%)

(a) ICEWS14 (b) ICEWS18

Figure 5: Performance of HGLS with diferent lengths of
long-term history (the left y-axis shows MRR value, and the
right y-axis shows Hit@1 value).

HGLS�� indicates the model with � layers for global-graph level
operation. The results are shown in Figure 4. The main observations
are as follows:

• Increasing the sub-graph level layer numbers substantially en-
hances the entity prediction. Clearly, the performance reaches
the highest value when � is 2 for all datasets. HGLS�� (� > 0)
achieves consistent improvement over HGLS�0 , which does not
consider the semantic dependencies among concurrent facts ex-
plicitly. We attribute the improvement to the utilization of high-
order neighbor information in concurrent facts, which enhances
the semantic representation of entities in each timestamp.

• Similarly, the model performance can be improved by increasing
the number of layers in the global-graph level. Specifcally, HGLS
achieves the best performance on ICEWS14, ICEWS18, ICEWS05,

0 5 10
Short-term history

40

43

46

32

34

35

MRR (%)

Hit@1 (%)

0 5 10
Short-term history

27

28

29

18

19

20

MRR (%)

Hit@1 (%)

(a) ICEWS14 (b) ICEWS18

Figure 6: Performance of HGLS with diferent lengths of
short-term history (the left y-axis shows MRR value, and the
right y-axis shows Hit@1 value).

and GDELT when � is 3, 2, 2, and 3, respectively. HGLS�1 outper-
forms HGLS�0 in all cases, which verifes the necessity of explic-
itly modeling the long-term dependencies of entities. Moreover,
HGLS�2 generally achieves better performance than HGLS�1 .
Such improvement might be attributed to the explicit utiliza-
tion of information across time between diferent entities. To
sum up, the above results illustrate that the long-term temporal
dependencies of entities can be captured by the global graph.

• When further stacking the propagation layer at each level, the
performance of HGLS begins to deteriorate. This is likely due to
over smoothing, which is consistent with the fndings in [16].

5.4.2 Efect of long- and short-term history. To investigate how
long-and short-term information afects the performance, we con-
duct HGLS with diferent lengths of long- and short-term historical
KGs on ICEWS14 and ICEWS18. The results are shown in Figure 5
and 6, respectively. More specifcally, we fnd that the performance
steadily grows when the length of long-term history increases from
0 to 50, implying that introducing long-term information can efec-
tively enhance the performance of entity prediction tasks. As the
length continued to grow, the performance of the model gradually
remained stable. One possible reason is that longer historical infor-
mation may be less useful for prediction tasks and may introduce
additional noise. For the short-term history, increasing its length
can obtain the improvement of performance. However, continuing
to increase the length does not improve the performance and even
starts to degrade in Hit@1. The reason might be the limitation of
the GRU net in modeling long sequences.

6 CONCLUSION
In this paper, we have proposed a novel method HGLS for TKG
reasoning. The method transforms the TKG sequence into a global
graph to explicitly associate historical entities in diferent times. A
Hierarchical Relational Graph Neural Network (HRGNN) module
is designed to capture long-term dependencies information among
entities by hierarchically encoding the built global graph. Addi-
tionally, a Gating Integration module is developed to adaptively
integrate long- and short-term information for each entity and re-
lation. The experimental results on four benchmarks and extensive
analysis demonstrate the efectiveness and superiority of HGLS in
the entity prediction task over TKG.

2419

Learning Long- and Short-term Representations for Temporal Knowledge Graph Reasoning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
This work is supported by National Natural Science Foundation of
China (U19B2038, 62141608, 62206291).

REFERENCES
[1] Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James

Starz, and Michael Ward. 2015. ICEWS Coded Event Data.
[2] Cen Chen, Kenli Li, Sin G Teo, Xiaofeng Zou, Kang Wang, Jie Wang, and Zeng

Zeng. 2019. Gated residual recurrent graph neural networks for trafc prediction.
In AAAI, Vol. 33. 485–492.

[3] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
In NIPS 2014 Workshop on Deep Learning.

[4] Songgaojun Deng, Huzefa Rangwala, and Yue Ning. 2020. Dynamic knowledge
graph based multi-event forecasting. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1585–1595.

[5] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2D Knowledge Graph Embeddings. In AAAI. 1811–1818.

[6] A García-Durán, Sebastijan Dumani, and M. Niepert. 2018. Learning Sequence
Encoders for Temporal Knowledge Graph Completion. In EMNLP. 4816–4821.

[7] R. Goel, SM Kazemi, M. Brubaker, and P. Poupart. 2020. Diachronic Embedding
for Temporal Knowledge Graph Completion. AAAI (2020), 3988–3995.

[8] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. 2020. DyERNIE: Dynamic
Evolution of Riemannian Manifold Embeddings for Temporal Knowledge Graph
Completion. In EMNLP. 7301–7316.

[9] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. 2021. Explainable Subgraph
Reasoning for Forecasting on Temporal Knowledge Graphs. In ICLR.

[10] Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and Volker Tresp. 2021. Learning
Neural Ordinary Equations for Forecasting Future Links on Temporal Knowledge
Graphs. In EMNLP. 8352–8364.

[11] Zhen Han, Yunpu Ma, Yuyi Wang, Stephan Günnemann, and Volker Tresp. 2020.
Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs.
In AKBC.

[12] Linmei Hu, Tianchi Yang, Luhao Zhang, Wanjun Zhong, Duyu Tang, Chuan Shi,
Nan Duan, and Ming Zhou. 2021. Compare to The Knowledge: Graph Neural
Fake News Detection with External Knowledge. In ACL. 754–763.

[13] W. Jin, M. Qu, X. Jin, and X. Ren. 2020. Recurrent Event Network: Autoregressive
Structure Inferenceover Temporal Knowledge Graphs. In EMNLP. 6669–6683.

[14] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[15] Kalev Leetaru and Philip A Schrodt. 2013. Gdelt: Global data on events, location,
and tone, 1979–2012. In ISA annual convention, Vol. 2. Citeseer, 1–49.

[16] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In AAAI.

[17] Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen,
Yuanzhuo Wang, and Xueqi Cheng. 2021. Temporal Knowledge Graph Rea-
soning Based on Evolutional Representation Learning. In SIGIR. 408–417.

[18] Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang
Zhou, Xinwang Liu, and Fuchun Sun. 2022. Reasoning over Diferent Types of
Knowledge Graphs: Static, Temporal and Multi-Modal. https://doi.org/10.48550/
ARXIV.2212.05767

[19] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He,
Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are We Really
Making Much Progress? Revisiting, Benchmarking and Refning Heterogeneous
Graph Neural Networks. In KDD. 1150–1160.

[20] Costas Mavromatis, Prasanna Lakkur Subramanyam, Vassilis N Ioannidis, Adesoji
Adeshina, Phillip R Howard, Tetiana Grinberg, Nagib Hakim, and George Karypis.
2022. Tempoqr: temporal question reasoning over knowledge graphs. In AAAI,
Vol. 36. 5825–5833.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In NeurIPS. 8024–8035.

[22] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In ESWC. 593–607.

[23] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.
2019. End-to-End Structure-Aware Convolutional Networks for Knowledge Base
Completion. In AAAI. 3060–3067.

[24] Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, and Kun He. 2021. TimeTraveler:
Reinforcement Learning for Temporal Knowledge Graph Forecasting. In EMNLP.
8306–8319.

[25] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. RotatE: Knowl-
edge Graph Embedding by Relational Rotation in Complex Space. In ICLR.

[26] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-Evolve:
Deep Temporal Reasoning for Dynamic Knowledge Graphs. In ICML. 3462–3471.

[27] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
DyRep: Learning Representations over Dynamic Graphs. In ICLR.

[28] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In ICML.
2071–2080.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS. 5998–6008.

[30] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,
Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin
Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and Zheng Zhang. 2019. Deep
Graph Library: Towards Efcient and Scalable Deep Learning on Graphs. ICLR
Workshop on Representation Learning on Graphs and Manifolds (2019).

[31] J. Wu, M. Cao, Jck Cheung, and W. L. Hamilton. 2020. TeMP: Temporal Message
Passing for Temporal Knowledge Graph Completion. In EMNLP. 5730–5746.

[32] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In AAAI, Vol. 33.
346–353.

[33] Tianxing Wu, Arijit Khan, Melvin Yong, Guilin Qi, and Meng Wang. 2022. Ef-
ciently embedding dynamic knowledge graphs. Knowledge-Based Systems 250
(2022), 109124.

[34] Yuwei Xia, Mengqi Zhang, Qiang Liu, Shu Wu, and Xiao-Yu Zhang. 2022.
MetaTKG: Learning Evolutionary Meta-Knowledge for Temporal Knowledge
Graph Reasoning. In EMNLP. 7230–7240.

[35] Chenjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, and Jens
Lehmann. 2020. Temporal Knowledge Graph Completion Based on Time Series
Gaussian Embedding. In ISWC. 654–671.

[36] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. In ICLR.

[37] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Em-
bedding Entities and Relations for Learning and Inference in Knowledge Bases.
In ICLR, Yoshua Bengio and Yann LeCun (Eds.).

[38] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph convo-
lutional networks: a deep learning framework for trafc forecasting. In IJCAI.
3634–3640.

[39] Mengqi Zhang, Shu Wu, Meng Gao, Xin Jiang, Ke Xu, and Liang Wang. 2020.
Personalized graph neural networks with attention mechanism for session-aware
recommendation. IEEE Transactions on Knowledge and Data Engineering 34, 8
(2020), 3946–3957.

[40] Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang. 2022. Dynamic
Graph Neural Networks for Sequential Recommendation. IEEE Transactions on
Knowledge and Data Engineering (2022), 1–1.

[41] Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan Cheng, and Yan Zhang.
2021. Learning from History: Modeling Temporal Knowledge Graphs with
Sequential Copy-Generation Networks. In AAAI. 4732–4740.

A PSEUDOCODE
Algorithm 1 provides the pseudo-code of the overall framework.

B DATASET STATISTICS
The statistics of four TKG datasets are summarized in Table 4.

C BASELINES
The static KG reasoning models compared with our work are shown
as follows:
• DisMult [37], a model that proposes a simplifed bilinear formu-
lation to capture relational semantics.

• ComplEx [28], a model that converts the embedding into complex
vector space to handle symmetric and antisymmetric relations.

• R-GCN [22], a graph neural network that handles the highly
multi-relational graph data.

• ConvE [5], a model that adopts a 2D convolutional neural network
to model the interactions between entities and relations..

• RotatE [25], a model that defnes each relation as a rotation from
the subject entity to object entity in the complex vector space.

2420

https://doi.org/10.48550/ARXIV.2212.05767
https://doi.org/10.48550/ARXIV.2212.05767

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Mengqi Zhang, et al.

Algorithm 1: Training procedure

Input: Train set: TKG sequence {G0, · · · , G� }; Initial model
parameters.

Output: A trained HGLS model.
1 while not converged do
2 for t in [1 : � − 1] do

3

4

5

6

7

8

9

10

11

/* Global Graph Construction */
Obtain global graph P� from {G� −� , · · · , G� };
/* Hierarchical Relational GNN */
h�,� ← Sub-graph level, Eq (2);
z�,� ← Global-graph level, Eq (3), (4), (5), (6) ;
/* Long- and short-term Representations */
h
�,�
�
+1, h

�
�,� +1 ← Eq (7), (8);

h�
�,� +1 ← Eq (9), (10);

�,� +1, h
�

/* Gating Integration */
e�,� +1, e�,� +1 ← Gating integration, Eq (12), (13) ;
/* Learning Objective */

Predicting Ge� +1 ← Eq (14), (15);
L ← Compute the loss between Ge� +1 and G�+1, Eq
(16), (17), (18) ;
Update model parameters.

Due to ignoring the time information of KG in the static model,
we also choose some state-of-the-art TKG reasoning models to
compare with HGLS, which include:
• CyGNet1 [41], a model that utilizes recurrence patterns in histor-
ical facts to predict future facts.

• RE-NET 2 [13], a model that adopts RNN to capture the historical
dependencies of each query and RGCN to model the structural
dependencies of each entity.

• xERTE3 [9], an explainable model that designs a temporal re-
lational attention mechanism to extract sub-graph around the
query.

• RE-GCN 4 [17], a model that uses a recurrent evolution network
based on relational graph neural networks to learn the evolution
of entities and relations over time. Moreover, the static properties
of entities are also incorporated via a static graph module. Since
other compared models do not utilize additional information, we
remove the static properties in RE-GCN to ensure the fairness of
comparisons among models.

• TITer5 [24], a reinforcement learning-based model, which in-
cludes a time-shaped reward based on Dirichlet distribution to
guide the model training.

D IMPLEMENTATION DETAILS
We implement our HGLS in Pytorch [21] and DGL Library [30].
We use Adam optimizer [14] with learning rate set to 0.001 and
�2 regularization �2 set to 10−5. The embedding size is fxed to

1https://github.com/CunchaoZ/CyGNet
2https://github.com/INK-USC/RE-Net
3https://github.com/TemporalKGTeam/xERTE
4https://github.com/Lee-zix/RE-GCN
5https://github.com/JHL-HUST/TITer

Table 4: The statistics of the datasets. Time gap represents
time granularity between temporally adjacent facts.

Datasets ICEWS14 ICEWS05-15 ICEWS18 GDELT

E
R

6,869
230

10,094
251

23,033
256

7,691
240

Train
Valid
Test

Time gap

74,845
8,514
7,371

24 hours

368,868
46,302
46,159
24 hours

373,018
45,995
49,545
24 hours

1,734,399
238,765
305,241
15 mins

0 500 1000 1500 2000

Runtime (seconds)

ICEWS14

ICEWS18

ICEWS05-15

GDELT

RE-NET xERTE HGLS RE-GCN

Figure 7: Runtime (seconds) comparison to some baselines.

200 for all methods. For the HGLS hyper-parameters, we apply a
grid search on the validation set: the length of short-term history
� in {1, 2, · · · , 10}, the layer number of sug-graph level � and
global-graph level � in {1, 2, 3, 4}, and the task coefcient �1 in
{0.1, 0.2, · · · , 1}.

For ICEWS14 and ICEWS18, we set the length of long-term
history � to 365, and for ICEWS05-15 and GDELT, we set it to 500.
The optimal length of short-term history � for ICEWS14, ICEWS05-
15, ICEWS18, and GDELT are 3, 5, 6, and 1, respectively. For HRGNN,
the optimal sub-graph level layer number is 2 for all datasets, and
the optimal global-graph level layer number are 3, 2, 2, and 3 for
ICEWS14, ICEWS105-15, ICEWS18, and GDELT, respectively. For
the R-GCN used in the sub-graph level of HRGNN, we set the block
dimension to 2 × 2 and the dropout rate for each layer to 0.2. For
ConvTransE of score function, the number of kernels, kernel size,
and the dropout rate are set to 50, 2 × 3, and 0.2, respectively. The
optimal task coefcient �1 is set to 0.7 for all datasets. For the
compared methods, we use the default hyper-parameters except
for dimensions. All experiments are conducted on NVIDIA Tesla
V100 (32G) and Intel Xeon E5-2660.

E EFFICIENCY
To investigate the efciency of our proposed model, we compare
HGLS with RE-GCN, xERTE, and RENET in terms of inference time
on the test set. Figure 7 shows that HGLS is faster than xERTE and
RE-NET, even though it models both long- and short-term depen-
dencies from history. RE-GCN is much faster than other models
because it only considers recent historical facts. RE-NET uses a
recurrent neural network to process historical queries recursively,

2421

https://github.com/CunchaoZ/CyGNet
https://github.com/INK-USC/RE-Net
https://github.com/TemporalKGTeam/xERTE
https://github.com/Lee-zix/RE-GCN
https://github.com/JHL-HUST/TITer

Learning Long- and Short-term Representations for Temporal Knowledge Graph Reasoning

and xERTE searches the target entity by expanding sub-graphs it-
eratively. Since many computations in these two models cannot be
parallelized, they are slower than the other models. HGLS is mainly
based on the GNN model, which can perform parallel computation,
thus ensuring a better balance of performance and efciency.

F CASE STUDY
To understand how our model facilitates the utilization of long-term
historical information, we visualize some quadruples associated
with the test entities from ICEWS14 based on the attention co-
efcients of the global-graph level of HRGNN, which are shown
in Table 5. The two cases show that our HGLS not only can take
advantage of the historical interactions of the test entity, such as
the interactions (Nabih Berri, Consult, Lawmaker, 2014/10/21) and
(Nabih Berri, Make an appeal or request, Legislature, 2014/04/16)
when inferring (Nabih Berri, Make statement, ?, 2014/11/02), but
also can explicitly utilize the historical interactions that are not di-
rectly related to the test entity, such as the fact (Legislature, Consult,
Hezbollah, 2014/04/16).

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 5: Case study. Bolded entities indicate the answers of
test quadruples. There are two types of associated quadruples:
those that are directly associated with the test entity and
those that are not. * denotes the latter.

Test quadruple Associated quadruples

(Nabih Berri, Consult, Lawmaker,
(Nabih Berri, 2014/10/21)

Make statement , (Nabih Berri, Make an appeal
Hezbollah (?), or request, Legislature, 2014/04/16)
2014/11/02) (Legislature, Consult, Hezbollah,

2014/04/16)*

(John Kerry, Praise, Iran, 2014/11/24)
(John Kerry, (John Kerry, Consult, Mohammad

Express intent to meet, Javad Zarif, 2014/10/15)
Federica Mogherini (?), (Mohammad Javad Zarif, Discuss by

2014/11/25) telephone, Federica Mogherini,
2014/10/15)*

2422

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Global Graph Construction
	4.2 Hierarchical Relational Graph Neural Network
	4.3 Long- and Short-term Representations
	4.4 Gating Integration
	4.5 Parameter Learning

	5 Experiments
	5.1 Experimental Setup
	5.2 Performance Comparison (RQ1)
	5.3 Ablation Studies (RQ2 and RQ3)
	5.4 Sensitivity Analysis (RQ4)

	6 Conclusion
	Acknowledgments
	References
	A Pseudocode
	B Dataset statistics
	C Baselines
	D Implementation Details
	E Efficiency
	F Case Study

